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Abstract : The problem of accurate prediction of the depth of scour around hydraulic structure 

(trajectory spillways) has been based on the experimental studies and the equations developed 

were mainly empirical in nature.  This paper evaluates the performance of the soft computing 

techiques, Adaptive Neuro-Fuzzy System (ANFIS), for the prediction of scour around hydraulic 

structure. The results are very promising (AE = -0.09882 %,   = 12.509 % and RMSE = 

0.56921) and demonstrate the strength of these intelligent techniques in predicting highly non-

linear scour parameters. 

 

1.0 Introductıon 

 

Spillways provide for disposal of flood water in excess of the reservoir 

capacity and also lead to the control of water flow at the downstream. Out of 

several types of spillways the over-fall, ogee and breast wall spillways are more 

commonly used. The energy dissipation in such spillways can be in the form of 

ski-jump jet, which throws the water jet away from the bucket lip into the air, 

and then in the plunge pool formed at the point of impact on the tail water.  The 

impact of the high velocity jet gives rise to the scour both upstream and 

downstream of the point of impingement. Such impact is transmitted through 

cracks and fissures of the rock by way of hydrodynamic pressure fluctuations 

causing hydraulic jacking action and also by the transient pressure fluctuation 

caused due to air locking.  This causes the rock mass to break into small pieces 

and to consequently get swept away in the downstream of the river.  The erosion 

continues up to the point where the impinging jet energy is insufficient to exert 

breaking pressure on the rock or where the secondary current produced are less 

strong to remove the rock blocks (Mason and Arumugam, 1985).  

The depth of scour is governed by a number of hydraulic, morphologic and 

geotechnical factors like (refer Figure 1) discharge intensity q, height of fall H1, 
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bucket radius R, bucket lip angle, , tail water depth dw, type of rock, size of 

rock d50, degree of rock homogeneity, and time and mode of operation of 

spillway(Azmathullah, 2005). In order to determine the safety of the dam and the 

adjoining structures, it is necessary to estimate the depth of the scour hole 

formed.  

 

 

 

 

 

 

 

 
Figure 1: Scour below trajectory bucket spillway 

 

 

A number of empirical formulae are available for scour depth estimation, as 

reported by Veronese (1937), Damle et al.(1966),  Wu (1973) and Lopardo et al. 

(2002). However, the problem of scour prediction has remained inconclusive; the 

main reason being the complexity of the phenomenon. Azmathullah (2005) has 

demonstrated the use of artificial neural networks for the scour estimation, which 

has many advantages over the conventional statistical analysis.  

In this study, the use of artificial neural networks - neuro fuzzy models is 

demonstrated for the estimation of spillway scour. Compared to artificial neural 

networks (ANNs), ANFIS models have additional advantages such as faster 

training and transparent results which can be easily understood by the decision 

makers. This study is aimed at knowing how it performs compared with ANN 

and regression equations (Azmathullah 2005) in estimating the spillway scour.  

The data used for the study is obtained from Azmathullah (2005), who has 

compiled measurements from numerous hydraulic model studies conducted in 

India. Table 1 gives the entire range of various parameters collected from the 

past as well as present hydraulic model studies.  
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Table 1 : Range of experimental data 

Sl.No. Parameter Units Range 

1 Discharge intensity, q m
3
/s/m 0.0089-0.3810 

2 Total head,H1 m 0.2791-1.7962 

3 Bucket radius,R m 0.1000-0.6096 

4 Lip angle,  radians 0.1740-0.7800 

5 Tail water depth, dw m 0.0286-0.2650 

6 Bed material size,d50 m 0.0020-0.0080 

7 Depth of scour, ds m 0.0512-0.5500 

8 Distance of maximum scour  

from bucket lip, ℓs 
m 0.4200-2.2400 

9 Width of  scour hole, ws m 0.6000-2.1400 

 

 

2.0 Dimensional Analysis 

  

Referring to the Figure 1 the equilibrium depth of scour (ds), measured from 

tail water surface, can be written as a function of discharge per m width or unit 

discharge of spillway (q), total head (H1), radius of the bucket (R), lip angle of 

the bucket ( ), tail water depth (dw), mean sediment size (d50), acceleration due 

to gravity (g), densities of water and sediment, w and s.  
 

ds = f(q, H1, R, , dw, d50, g, w, s )                (1) 

 

In the present study the standard deviation of fragmented bed material g is 

not considered. 

The maximum width of scour hole (ws) and the distance of maximum scour 

depth from spillway bucket lip (ℓs) can be written in a similar form as: 

  

ws = f(q, H1, R, , dw, d50, g, w, s)                 (2) 

 

ℓs = f(q, H1, R, , dw, d50, g, w, s)                           (3) 
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By the use of the Buckingham  theorem, non-dimensional equations in 

functional form can be obtained, as below: 
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The equations (4) to (6) are worked out in the present study in which the ratio of 

sediment density to water density, s/ w is kept constant for a given bed material 

sample used in the experiments and can be eliminated from the analysis. 

 

 

3.0 Statistical Regression Models 

 

In this study, the above mentioned dimensionless groups of parameters are 

related to each other on the basis of non-linear regression. This yielded equations 

(7) to (9) for estimating maximum scour depth, maximum scour width and 

distance of maximum scour location respectively. Eighty percent of observations 

are used to arrive at expressions for predicting the equilibrium scour hole 

parameters, according to the functional relationship given by equations (4) to (6).  

 

 

 

196.0
196.0

50

233.00815.0

1

694.0

3
914.6

wd

d

wd

R

wd

H

wgd

q

wd

sd
     (7) 

      



57 

 

Malaysian Journal of Civil Engineering 22(1) : 53-65 (2010) 

 

34661.0
037.0

50

043.028.0

1

42.0

3
85.9

wd

d

wd

R

wd

H

wgd

q

wd

s      (8)  

 

16.0

242.0

50

1396.055107.0

1

015.0

3
42.5

wd

d

wd

R

wd

H

wgd

q

wd

sw
 (9) 

 

The constants in the above equations have been worked out on the basis of the 

least square fit to 80% of randomly selected values, by using the Origin software 

in windows platform.  

 

 

4.0 Implementation of the ANFIS Model 

 

The MATLAB computing language is utilized for model programming. Since 

the ANFIS is usually started with a prototype fuzzy system, a fuzzy system 

generator is needed. The software MATLAB (Mathworks Inc., USA) also 

provides three fuzzy system generators ready for use, i.e. ―fuzzy‖, ―genfis1‖ and 

―genfis2‖. If explicit knowledge of the system is available, designers can directly 

create a fuzzy system using ―fuzzy‖ function. If it is not clear what the fuzzy 

system should look like, it can be started using either―genfis1‖ or ―genfis2‖ 

provided a training data set is available. The function ―genfis1‖ can examine the 

data set and then generate a fuzzy system based on the given numbers and types 

of membership functions. In some cases, designers have no idea of the numbers 

and types of membership functions. The function ―genfis2‖ would generate a 

first order Sugeno fuzzy system based on subtractive clustering of the data set 

provided (Tay and Zhang, 1999).  

After the input and output parameters are determined, genfis2 is employed to 

generate first order Sugeno fuzzy system (Fig. 2) and the ANFIS architectures 

are similar as they have the same number of inputs and rules. Fig. 5.16 depicts 

the schematic structure of ANFIS model Ds.  In order to map the causal 

relationship related to the scour, input-output schemes are employed, which 

utilizes their non-dimensional groupings.  Model dS (Figure 2) employs the input 

of grouped dimensionless variables namely, Fo, H1/dw, R/dw, d50/dw and  (F0 
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being q/(g dw
3
)
1/2

 ) and the output of relative scour depth, length and width, i.e., 

ds/ dw, ls/ dw, ws/dw respectively.  

Similar to the regression exercise described earlier, out of the total of 95 

input-output pairs, 80 percent, selected randomly are used for training and 

remaining 20 percent are employed for testing or validation, dictated by the use 

of Gaussian function; all patterns are normalized within the range of (0.0, 1.0) 

before their use.  The trainings of these networks are stopped after reaching the 

minimum error goal of   0.0005.    

The performance of the model is assessed by evaluating the scatter between 

the observed and predicted results via correlation coefficients r, root mean 

squared errors (RMSE), the average error (+ or -), AE, and the average absolute 

deviation, .  Comparison of ANFIS results with earlier ANN results 

(Azamathulla, 2005), like feed forward back propagation (FFBP2), feed forward 

cascade correlation (FFCC) and radial basic function (RBF2) is shown in Table 

2. 

Figures 5.17 and 5.19 show a scatter diagram where the ANFIS based 

predictions of scour depth, width and length are compared with the target values 

for testing set.  It may be seen that while depth is predicted with a good accuracy 

(r= 0.98) the width and length of scour are predicted, as earlier, with lesser 

accuracy and there is also a tendency to underestimate the medium level values; 

the reason for the latter observation is not clear. 

It may be seen from Figures 3, 4 and 5 as well as from Table 2 that when the 

scour depth alone is considered, ANFIS Model  emerges as the most accurate 

model showing highest correlation (r = 0.976) and lowest difference between 

predicted and actual scour depths (AE = -0.09882 %,   = 12.509 % and RMSE 

= 0.56921). 

When it comes to length of the scour hole, considerable variation in error 

measures across various networks may be noticed.  In this case the FFBP; 

Model-2 comes out as most acceptable network in terms of accuracy as it 

involves highest r (=0.989) and lowest AE (=2.876%),  = (3.725) and RMSE 

(=0.72041) values.  

Examination of Table 2 for the case of width of scour hole suggests that there 

is a large variation in magnitudes of error measures across the neural networks 

and that the most accurate network is again FFBP; Model-2, which has the 

highest r of 0.990 and lowest AE,  and RMSE values of -2.336 %, 9.111% and 

1.6723 respectively.   
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5.0 Conclusions:   

 

The results are compared with the regression equation formulae and neural 

network schemes. The ANFIS results are found highly satisfactory, as seen from 

the Figures 3 through 5 that show scatter plots for depth of scour downstream of 

flip bucket, width and location of maximum scour from bucket lip.  

Further studies for obtaining the pattern of scour and its location with respect 

to bucket lip, and with rock quality designation (RQD) for prototype data are in 

progress. The preliminary studies give very good prediction. Hence it is 

concluded that ANFIS is more efficient in predicting scour parameters 

downstream of flip bucket to other neural network schemes. 
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Figure 2:   The ANFIS Model for ds/dw 
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Figure 3: Scatter diagram of observed versus predicted values of the relative scour depth 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Scatter diagram of observed versus predicted values of the relative scour width 
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Figure 5: Scatter diagram of observed versus predicted values of the relative scour length 

(distance from bucket lip) 
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Table 2: Comparison of network – yielded and true values 

Parameter r AE  RMSE 

ANFIS-Model 

ds / dw 0.976 -0.09882 12.50924 0.56921 

ℓs / dw 0.936 4.849 14.116 3.515679 

ws / dw 0.965 4.6170 18.340 3.995247 

FFBP(feed forward back propagation)- Model (Azamathulla 2005) 

ds / dw 0.970 -6.680 13.845 0.579655 

ℓs / dw 0.989 -2.876 3.725 0.720417 

ws / dw 0.990 -2.336 9.111 1.672423 

FFCC (Feed forward cascade correlation)- Model (Azamathulla 2005) 

ds / dw 0.949 -16.738 19.109 0.841427 

ℓs / dw  0.972 -5.286 10.138 1.740402 

ws / dw 0.965 -3.625 18.1756 3.053031 

RBF (Radial Basis function) – Model (Azamathulla 2005) 

ds / dw   0.967 2.390 15.13 0.662571 

ℓs / dw  0.943 8.801 11.91661 2.722683 

ws / dw 0.974 7.663 12.97874 2.624881 

Regression Equations (Azamathulla 2005) 

ds / dw 0.842 -1.427 22.790 1.343503 

ℓs / dw 0.929 3.900 13.550 3.569314 

ws / dw 0.883 -19.570 20.150 5.612486 
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Appendix I   

 

 

The Error Measures                                                        

 

Correlation coefficient (r), 

                                                   
22 yx

xy
r

    

Where x = )( XX  ,  y = ( )YY  , X = Observed values, X =Mean of X, Y = 

Predicted value, Y =Mean of Y.  The summation in the above equation as well as 

in the following two equations is carried out over all ‗n‘ number of testing 

patterns. 

Average error (AE), 

                                                     n

X

YX

AE

100*
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Root Mean Square Error (RMSE), 

2

1
2

n

)YX(
RMSE

                                       

 

Average absolute deviation, : 

 

100*
X

XY

 

 

 


