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Abstract: Reinforced and concrete-encased composite columns of arbitrarily shaped cross 

sections subjected to bi axial bending and axial load are commonly used in many structures.  For 

this purpose, an iterative numerical procedure for the strength analysis and design of short and 

slender reinforced concrete columns with a square cross section under biaxial bending and an 

axial load by using an EC2 stress-strain model is presented in this paper. The computational 

procedure takes into account the nonlinear behavior of the materials (i.e., concrete and 

reinforcing bars) and includes the second order effects due to the additional eccentricity of the 

applied axial load by the Moment Magnification Method. The ability of the proposed method and 

its formulation has been tested by comparing its results with the experimental ones reported by 

some authors. This comparison has shown that a good degree of agreement and accuracy 

between the experimental and theoretical results have been obtained. An average ratio (proposed 

to test) of 1.06 with a deviation of 9% is achieved. 

 

Keywords: Slender, Bi-axial, bending, RC column, magnifier, eccentricity, encased composite 
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1.0 Introduction 

 

Reinforced and concrete-encased composite columns of arbitrarily shaped cross 

sections subjected to biaxial bending and an axial load are commonly used in 

many structures, such as buildings and bridges. A composite column is a 

combination of concrete, structural steel and reinforced steel to provide for an 

adequate load - carrying capacity of the member. Such composite members can 

therefore provide rigidity, usable floor areas and savings for mid-to-tall 

buildings. Many experimental and analytical studies have been carried out on 

reinforced and composite members in the past. Furlong (1979) has carried out 
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analytical and experimental studies on reinforced concrete columns using the 

well-known rectangular stress block for the concrete compression zone in the 

analysis. Brondum-Nielsen (1986) has proposed a method of calculating the 

ultimate strength capacity of cracked polygonal concrete sections using a 

rectangular stress block in the concrete compression zone of a section under 

biaxial bending. Hsu (1985; 1987) has presented theoretical and experimental 

results for L-shaped and channel - shaped reinforced concrete sections. Dundar 

(1990) has studied reinforced concrete box sections under biaxial bending and an 

axial load. Rangan (1990) has presented a method to calculate the strength of 

reinforced concrete slender columns, including creep deflection due to a 

sustained load as an additional eccentricity, the method compares with the ACI 

318-Building Code Method (1999). Dundar and Sahin (1993) have researched 

arbitrarily- shaped reinforced concrete sections subjected to biaxial bending and 

an axial load using Whitney’s stress block (1940) in the compression zone of a 

concrete section. Rodriguez and Ochoa (1999) and Fafitis (2001) have suggested 

numerical methods for the computation of the failure surface of reinforced 

concrete sections of an arbitrary shape. Hong (2001) has proposed a simple 

approach for estimating the strength of slender reinforced concrete columns with 

an arbitrarily-shaped cross section using a nonlinear stress–strain relationship for 

the materials. Saatcioglu and Razvi (1998) have presented experimental research 

that investigates the behavior of high- strength concrete columns confined by a 

rectilinear reinforcement under concentric compression. Furlong, et al. (2004) 

have examined several design procedures for an ultimate strength analysis of 

reinforced concrete columns and compared with a range of short and slender 

experimental columns under a short-term axial load and biaxial bending. Mirza 

(1989) has examined the effects of variables, such as the confinement effect, the 

ratio of structural steel to a gross area, the compressive strength of concrete, the 

yield strength of steel and the slenderness ratio, on the ultimate strength of 

composite columns. Lachance [1982], Chen, et al. [2001] and Sfakianakis [2002] 

have proposed a numerical analysis method for short composite columns with an 

arbitrarily - shaped cross section. The confinement provided by lateral ties 

increases the ultimate strength capacity and ductility of reinforced concrete 

columns under combined biaxial bending and an axial load. The gain in strength 

and ductility in concrete are obtained by many confinement parameters, e.g., the 

compressive strength of the concrete, the longitudinal reinforcement, the type 

and the yield strength of the lateral ties, the tie spacing, etc. Due to such 

parameters, a determination of the mechanical behavior of confined concrete is 

not as easy as that with unconfined concrete. Some researchers, for instance, 

Kent and Park (1971), Sheikh and Uzumeri (1982), Saatcioglu and Razvi (1992), 

Chung et al. (2002) have presented a stress–strain relationship to describe the 
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confined concrete’s behavior. Dundar, et al. (2007) have carried out an 

experimental investigation of the behavior of reinforced concrete columns, and a 

theoretical procedure for an analysis of both short and slender reinforced and 

composite columns with an arbitrarily- shaped cross section subjected to biaxial 

bending and an axial load is presented. In the proposed procedure, nonlinear 

stress–strain relations are assumed for concrete, reinforced steel and structural 

steel materials. The compression zone of the concrete section and the entire 

section of the structural steel are divided into an adequate number of segments in 

order to use various stress–strain models for the analysis. The slenderness effect 

of the member is taken into account by using the Moment Magnification Method 

(MMM). The test results were compared with the theoretical results obtained by 

a developed computer program which uses various stress–strain models for the 

confined or unconfined concrete in the compression zone of the member. The 

comparison shows a good degree of agreement of the results obtained by the 

proposed procedure.  

The main objective of this paper is to present an iterative computing 

procedure for the (a) rapid design and ultimate strength analysis of a square 

cross-section for both short and slender reinforced concrete elements subjected 

to biaxial bending and an axial load. For this aim a simple model has been 

developed, which considers various unconfined concrete stress–strain models for 

a concrete compression zone for both short and slender reinforced concrete 

columns. A simple formula to predict the resistance capacity of biaxially loaded 

short reinforced concrete columns with a square cross-section is introduced. 

Based on a numerical analysis, a capacity factor which represents the ratio of P–

M interaction diagrams in a uniaxial loading column to a biaxial loading column 

is proposed. The relationships between the capacity factor (K) and all the design 

variables are established by regression, and the required P-M interaction diagram 

of the biaxial RC column can be easily constructed without conducting refined 

analyses. The slenderness effect of the member is then taken into account using 

the Moment Magnification Method. Finally, the theoretical results obtained from 

using the proposed model is compared with the theoretical and experimental 

results available in the literature for short and slender columns.  

 

2.0  Analytic method 

 

2.1.  Assumptions 

 

The proposed method is based on the following assumptions: 

1. The plane sections remain plane after any deformation (Bernoulli’s 

assumption). 
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2. Arbitrary monotonic stress–strain relationships for each of the three materials 

(i.e.,  concrete, structural steel and the reinforcing bars) may be assumed. 

3. The longitudinal reinforcing bars are identical in diameter and are subjected to 

the same amount of strain as the adjacent concrete. 

4. The effect of creep and the tensile strength of concrete and any direct tension 

stresses due to shrinkage, etc., are ignored. 

5. Shear deformation is ignored. 

 

2.2 Stress–strain models for the materials 

 

The analysis utilizes well established models for concrete (confined, and 

unconfined) and reinforcing steel. Figure.1 and 2 show the stress strain models 

for the concrete and steel. 

 

 

 
 

Where: fc = concrete stress 

f’c = compressive strength of concrete; f’c=0.85fc 

εc= concrete strain 

εl= 2f’c/Ec 

Ec= concrete modulus of elasticity 
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Figure 1: Stress-Strain relationship for concrete in compression 
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Where: fs= steel stress 

Es : steel modulus of elasticity 

εs= steel strain 

εy= steel yielding stress 

fy= steel yielding stress 

 

 

2.3 Capacity Factor 

 

Since the ultimate resisting capacity of an RC column is governed by many 

variables and is gradually reduced as the degree of axial load increases (P/Agf’c), 

it is necessary in many cases to conduct a refined numerical analysis that 

considers material nonlinearities in order to accurately predict the ultimate 

strength of a biaxial RC column. In order to directly analyse and design biaxial 

RC columns, a capacity factor K, which represents the ratio of the P–M 

interaction diagrams in a uniaxial loading column to a biaxial loading column, is 

introduced. If the dimensions of the concrete cross-section and the material 

properties have been selected, the interaction diagrams for uniaxial loading are 

then easily constructed by introducing the capacity factor (K). One can easily 

obtain the interaction diagrams for biaxial loading with any angle of a resultant 

bending moment MBIA. The capacity factor (CF) is defined as the ratio of the 

distance from the origin (eccentricity) for a uniaxial interaction diagram to a 

Figure 2: Elastic -Plastic bilinear behavior for steel 

 

fy 

ε 

 
0.2% 1% 

231 



Malaysian Journal of Civil Engineering 22(2) :227-245 (2010) 

biaxial loading interaction diagram   at the same degree of axial load level (P/P0), 

Figure 3:  

      

PUNI = PBIA                                                                                     (1) 

MUNI = K.MBIA = K. Mn = K ²² yx MM                                   (2) 

K = (
OB

OA
) = 

BIA

UNI

M

M
                                                                            (3) 

 

Where K is the Capacity factor, MUNI is the equivalent uniaxial moment, and 

MBIA is the resultant moment for the biaxial loading.  

 
 

 

 

In order to introduce a formula for the capacity factor (K), some 

difficulties must be overcome, because the interaction diagrams must be 

determined for the biaxial and uniaxial cross-sections with the same design 

variables, used by Dundar et al. (1993), moreover an infinite number of possible 

RC sections can be selected for the same set of external applied forces. Hence, in 

determining RC interaction diagrams, all the variables need to be assumed on the 

basis of practical limitations and the design code requirements, R.P.A.99-03 

Figure 3: determination of the capacity factor K 
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(2003). The commonly used compressive strength of concrete and stress of steel 

for design are fc = 25, 30 and 40MPa for normal concrete and fy = 400MPa 

respectively. In addition, the steel ratio ranges from 1% to 4% in the current 

zones. Due to the symmetry of the section and the reinforcement, the angle of 

loading is supposed to vary from 0° (uniaxial) to 45° (biaxial) with an increment 

of 15°. Table 1 gives the range of variables adopted for the design of 

experimental plans to be included in the analysis. 

 
Table1: parameters variation 
 

Parameters Values 

Cross-section shape Square 

Biaxial bending angle (α) with respect to a strong axis α=0°, 15°, 30°, 45° 

Reinforcement distribution Uniformly distributed at four faces 

Axial load P/P0 where P0=f’cAg 10 values from 0,1P0 to 0,7P0 

Compressive concrete strength f'c=25, 30, 40 MPa 

Steel strength fy= 400Mpa 

Geometric reinforcement ratio ρs= 1%, 2%, 4% 

 

The effect of the different parameters on the interaction diagrams can be 

summarized as: 

-  the cross-section’s capacity increases with the increase in the concrete’s 

strength in the same proportion between 0.1 to 0.7, but especially in the region 

0.2≤ P/P0≤ 0.5 around the balanced point;  

- the section’s capacity increases with the increase in the steel ratio over the 

length of the curves; 

- the section capacity decreases when the angle of loading increases over the 

curve, especially in the region of tension control and until P/P0= 0.6, over this 

value the resistance capacity is the same for the different angles. For all the 

experiment plans, the calculated capacity factors K for the different parameters 

selected and as a function of the axial load level are depicted in Figs. 2-4. Nine 

typical results of the capacity factor K calculated with 3 ratios, 3 angles and 3 

types of concrete with a range of axial loads equal to 0,1P0 to 0,7P0 are obtained.  
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Figure 4: variation of K factor in accordance with concrete compression strength 

 

Figure 5: variation of K factor in accordance with the steel ratio 
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Figures 4 to 6 show that the strength capacity factor K: 

-  Decreases for large values of compressive strength, especially in the region of 

tension control P ≤ 0.4 P0. In the compression control region, the factor 

decreases proportionally to large axial load values; 

 - Increases with large values of the steel ratio, but the values of K are lower in 

the region of compression control; 

-  Increases with large values of a loading angle especially, in the region of 

tension control. 

In order to determine a reasonable regression formula, the effect of each 

design variable was studied, Figs. 4-6. Since the coefficients are gradually 

increased or decreased according to changes in each design variable and 

represent a nonlinear characteristic, a second order polynomial is assumed in 

terms of the design variables. The regression formula represented in Eq.4 is 

finally selected for the capacity factor K, Demagh [2007]:  

 

 K= a0 + a1f’c + a2 ρs + a3 (
0P

P
) + a4 α + a5f’c² + a6 ρs² + a7 (

0P

P
) ² + a8 α² + a9f’c  

ρs+ a10 f’c     (
0P

P
) + a11f’c α + a12 ρs (

0P

P
) + a13 ρs α + a14α (

0P

P
)                       (4) 

Figure 6: variation of K factor in accordance with the loading angle 
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Where f’c is the compressive strength of concrete (MPa), P/P0 the loading level 

of the axial force, ρs the steel ratio (100.Ast/Ac) and α the loading angle (α°), and 

the variables take the values:  

 
Table 2: values of coefficients 

 
a1 a2 a3 a4 a5 a6 a7 

0.002271 0.009508 0.796264 0.006587 0.000005 -0.010319 -1.177950 

a8 a9 a10 a11 a12 a13 a14 

-

0.000022 

0.000268 -0.010901 -0.000054 0.126399 0.000725 -0.007453 

 

3.0 Short columns 

 

An experimental analysis is carried out in order to compare the numerical results 

obtained by the proposed formula with the experiment’s results. For this 

purpose, a comparison of the capacity factor (K) is calculated with the proposed 

formula and those of tests for the specimens selected. Table 3 shows the 

comparison with the experiment’s results in Hsu [27]; it appears clearly that the 

proposed formulation gives good results: an error of 7% for the specimens 

governed by tension control and 6% for the specimens governed by compression 

control, with a deviation of 3%.   

 

4.0 Slender columns 

 

According to the ACI 318-99 provisions for the design of slender columns, 

strength is defined as the cross-section strength; on the other hand, the applied 

external moment is magnified due to second order effects, i.e., the moment 

magnification method is used. 

 

4.1  Cross-section strength 

 

For design purposes, when a member is subjected to an axial load P and moment 

M, it is usually convenient to replace the axial load and moment with an equal 

load P applied at eccentricity e=M/P. The computation of the design strength is 

then obtained through a strain compatibility analysis. The actual compressive 

stress distribution of the concrete is replaced by an equivalent rectangular 

distribution. In computing the value of P and M, which produce the state of 

incipient failure, the width of the stress block is taken as 0,85f’c and the depth is 
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a=β1.c (c is the depth of the neutral axis). The factor β1 is given by Eq.5 (with the 

concrete compressive strength f’c given in MPa):  

β1= 1.09-0.008f’c                                                                                    (5) 

 

With:  0.65≤ β1 ≤0.85 

 
Table 3 : Data of analyzed columns 

 
investigator specimen Dimensions 

mm 

h/a fy 

MPa 

Es 

MPa 

fc' 

MPa 

Rho 

% 

ex 

mm 

ey 

mm 

 

 

 

 

 

 

Hsu 

S-1 101.6x101.6 7,5 307.05 200100 22.08 2.75 25.4 38 

S-2 101.6x101.6 7,5 307.05 200100 28.25 2.75 25.4 38 

U-1 101,6x101.6 10 503.7 201480 26.94 2.81 63.5 89 

U-2 101.6x101.6 10 503.7 201480 26.26 2.81 76.2 89 

U-3 101.6x101.6 10 503.7 201480 26.87 2.81 89 89 

U-4 101.6x101.6 10 503.7 201480 26.43 2.81 50.8 50.8 

U-5 101.6x101.6 10 503.7 201480 25.63 2.81 12.7 139.7 

U-6 101.6x101.6 10 503.7 201480 26.87 2.81 12.7 177.8 

H-1 114.3x114.3 15 503.7 200100 24.46 4.87 76.2 50.8 

H-2 114.3x114.4 15 503.7 200100 26.8 4.87 82.6 57.15 

H-3 114.3x114.5 15 503.7 200100 29.16 4.87 63.5 76.2 

 

 

 

 

Ramamurthy 

B-1 203.2x203.2 10 322.85 207000 29.19 3.88 21.04 78.51 

B-2 203.2x203.2 10 322.85 207000 25.77 3.88 19.41 46.94 

B-3 203.2x203.2 10 322.85 207000 33.54 3.88 50.8 88 

B-4 203.2x203.2 10 322,85 207000 31.98 3.88 63.5 110 

B-5 203.2x203.2 10 322.85 207000 19.35 3.88 35.91 35.91 

B-6 203.2x203.2 10 322.85 207000 27.57 3.88 64.66 64.66 

B-7 203.2x203.2 10 322.85 207000 29.5 3.88 71.84 71.84 

B-8 203.2x203.2 10 322.85 207000 34.15 3.88 101.6 101.6 

 

 

 

 

 

BR-1 127x127 3,2 494.04 193200 31.97 3.2 10.38 25.062 

BR-2 127x127 3,2 494.04 193200 31.97 3.2 10.35 24.99 

BR-3 127x127 6 494.04 193200 37.09 3.2 59.03 27.61 

BR-4 127x127 6 494.04 193200 37.09 3.2 59.03 27.61 
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Heindahl 

and 

Bianchini 

BR-5 127x127 6 494.04 193200 37.09 3.2 124.21 51.44 

BR-6 127x127 6 494.04 193200 37.09 3.2 127.71 52.91 

CR-1 127x127 3,2 494.04 193200 25.3 3.2 19.36 19.36 

CR-2 127x127 3,2 494.04 193200 25.3 3.2 19.16 19.16 

CR-3 127x127 6 494.04 193200 31.97 3.2 48.18 48.18 

CR-4 127x127 6 494.04 193200 35.63 3.2 49.45 49.45 

CR-5 127x127 6 494.04 193200 35.63 3.2 96.12 96.12 

CR-6 127x127 6 494.04 193200 35.63 3.2 94.615 94.615 

ER-1 127x127 6 494.04 193200 24.01 3.2 63.63 26.34 

ER-2 127x127 6 494.04 193200 24.01 3.2 124.18 51.435 

Fr-1 127x127 6 494.04 193200 25.25 3.2 48.71 48.71 

Fr-2 127x127 6 494.04 193200 25.25 3.2 94.29 94.29 

 

 

The solution of the equations stating the equilibrium between the external and 

internal forces as well as the external and internal moments, within the 

constraints of strain compatibility, determines the nominal axial load Pn, which 

can be applied at an eccentricity e for any eccentrically loaded column.  
 

 

4.2 Magnified moments 

 

For a short column, the moment magnification due to slenderness effects is 

negligibly small; on the other hand, if the column is sufficiently slender, the 

maximum moment acting on the column increases nonlinearly as P increases. 

For the same externally applied moment M, the strength of the slender column is 

reduced as compared to the stocky column.  

The ACI 318-99 specifies that axial loads and end moments in columns may be 

determined by a conventional elastic frame analysis. The member is then to be 

designed for that axial load and a simultaneous magnified column moment. The 

ACI 318-99 equation for a magnified moment Mc for columns in non-sway 

frames is: 

          Mc =δns.M2                                                                                                (6) 

The non-sway moment magnification factor δns is given by: 

      δns = Cm/(1-Pu/φPc) ≥1                                                                                   (7) 
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Where M2 = the larger factored end moment; Cm = equivalent uniform moment 

diagram factor (Cm=1 for the case of supports with equal bending at both ends: 

pure curvature);  

Pu = the factored axial load acting on the column; φ=capacity reduction factor 

(φ=1 to perform this comparative analysis, which is designed to consider the 

inevitable random variability of the materials); Pc = the critical buckling load 

given by: 

 

 Pc = π²EI/(klu)                                                                               (8) 

 

Where: EI is the effective rigidity;  

 

EI=0.4EcIg/(1+βd)                                                                                    (9) 

 

βd denotes proportion of the factored axial load that is considered sustained. 

 

 

 

 
 

 

 

 

 

 

 

 

 

Figure 7: variation of δns factor in accordance with slenderness 
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4.3  Computer analysis of reinforced concrete columns tested by Dundar, 

etal. 

 

Dundar, et al. have tested [23] fifteen (15) reinforced concrete columns, twelve 

specimens of square tied columns and three L-shaped sections. The cross section 

details and dimensions of each specimen are shown in Table 3. The reinforced 

concrete column specimens were cast horizontally inside a formwork in the 

Structural Laboratory at Cukurova University, Adana, Turkey. The longitudinal 

reinforcement consisted of 6mm and 8mm diameter deformed bars with a yield  

 
Table 4: comparison with experimental results Hsu (1988) 

 
Experimental 

investigation 

Column 

specimen 

Values from Tests 

Ktest 

 

Values from Formula 

KK 

Ratio 

Ktest / KK 

Error 

% 

 Tension Control   

 

 

Hsu 

U-1 1.025 1.102 0.930 7 

U-2 1.024 1.122 0.913 9 

U-3 1.015 1.138 0.892 11 

U-6 0.859 0.912 0.942 6 

 

 

Ramamurthy 

B-3 1.061 1.081 0.98 2 

B-4 1.086 1.095 0.992 0 

B-7 1.032 1.123 0.919 8 

B-8 1.03 1.151 0.895 10 

   average 7% 

Compression Control  

 

Hsu 

S-1 1.198 1.092 1.097 10 

S-2 1.118 1.084 1.031 3 

U-4 1.047 1.148 0.912 9 

Ramamurthy B-1 0.97 0.995 0.975 2 

B-6 1.063 1.151 0.923 8 

 

 

 

Heimdahl 

and Bianchini 

BR-3 1.108 1.059 1.046 5 

BR-4 1.173 1.059 1.107 11 

CR-3 1.164 1.131 1.026 3 

CR-4 1.184 1.134 1.044 4 

ER-1 0.946 1.042 0.907 9 

ER-2 1.09 1.055 1.033 3 

Fr-1 1.054 1.124 0.938 6 

Fr-2 1.13 1.154 0.979 2 

   average 6% 
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strength of 630 and 550MPa, respectively. Lateral reinforcements were arranged 

using 6mm and 6.5mm diameter deformed reinforcing bars with yield strength of 

630MPa for the specimens. The parameters of the specimens and the results are 

presented in Table 4. The stress-strain model CEC [28] is the same one used for 

the determination of the capacity factor K. 

The reinforced concrete column specimens were tested with pinned 

conditions at both ends under short-term axial load and biaxial bending. These 

specimens were also analyzed for the ultimate strength capacities using a 

computer program. 
 

 
 

 

 
Table 5: Specimen details of RC columns 

Specimen  L 

(mm) 

fc 

(MPa) 

ex 

(mm) 

ey 

(mm) 

Ф/s 

(mm/cm) 

lateral 

Ratio 

ρ=As/Ag 

% 

Ntest 

(kN) 

CEC 

 

C1 870 19.18 25 25 6/12.5 1.13 89 88.95 

C2 870 31.54 25 25 6/15 1.13 121 126.78 

C3 870 28.13 25 25 6/10 1.13 125 

 

116.51 

C4 870 26.92 30 30 6/8 1.13 99 

 

93.57 

C5 870 25.02 30 30 6/10 1.13 94 88.83 

C11 1300 32.27 35 35 6.5/10.5 2.0 104 88.81 

C12 1300 47.86 40 40 6.5/10.5 2.0 95 91.39 

C13 1300 33.10 35 35 6.5/10.5 2.0 98 90.00 

Figure 8: variation of δns factor in accordance with the value of βd 

Beta d=0 

Beta d=0.2 
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C14 1300 29.87 45 45 6.5/12.5 2.0 58 63.02 

C21 1300 31.7 40 40 6.5/10.5 0.89 238 233.41 

C22 1300 40.76 50 50 6.5/10.5 0.89 199 208.83 

C23 1300 34.32 50 50 6.5/10.5 0.89 192 189.38 

 

In the ultimate strength analysis, various stress–strain models and the 

experimental stress–strain relationships obtained from the cylinder specimens of 

the columns by the authors were used for the concrete compression zone in order 

to compute the theoretical ultimate strength capacity and to compare it with the 

experimental results of the column specimens. A good degree of agreement was 

obtained between the theoretical results according to each of the concrete stress–

strain models and the experimental results. The mean ratios of the comparative 

results indicate that the shape of the concrete stress–strain relationship has little 

effect on the ultimate strength capacity of the column members; on the other 

hand, the maximum permissible strain plays the most important role on the 

ultimate strength capacity. 

These columns are then solved by the proposed method for the ultimate strength 

analysis using the parabola-rectangle defined by the EC2, which is applied to 

obtain the capacity factor of the section K; then the ultimate bending moment of 

the section MUT is obtained. The ultimate moment of the slender member MUMS 

is computed using the magnification factor. The theoretical results obtained for 

the maximum resisting moment capacity as well as the test results are presented 

in Table 6 for comparison. 

 
Table 6: Comparative results for specimens 

Specimen 

 

Ptest 

KN 

FC 

MPa kl/r 

P0 

KN 

P/P0 

 

K 

 

MUT=KMB 

proposed 

MUM 

 

δ MUMS 

ACI 

Ratio 

 

N°        Short ACI Slender MUMS/MUT 

C1 89 19.18 30.135 191.8 0.464 1.003 3156.06 2871.48 1.075 3086.14 0.977 

C2 121 31.54 30.135 315.4 0.383 1.005 4299.38 4223.52 1.087 4591.35 1.067 

C3 125 28.13 30.135 281.3 0,444 0.977 4317.77 3841.59 1.094 4202.98 0.973 

C4 99 26.92 30.135 269.2 0.367 1.032 4334.62 4305.37 1.074 4624.96 1.066 

C5 94 25.02 30.135 250.2 0.375 1.034 4123.67 4208.71 1.072 4512.07 1.094 

C11 104 32.27 45.029 322.7 0.322 1.109 5708.84 5670.08 1.180 6690.98 1.172 

C12 95 47.86 45.029 478.6 0.198 1.119 6013.52 5247.55 1.139 5978.18 0.994 

C13 98 33.1 45.029 331.0 0.296 1.116 5413.44 5608.6 1.166 6541.13 1.208 

C14 58 29.87 45.0294 298.7 0.194 1.144 4222.61 3693.64 1.095 4046.99 0.958 

C21 238 31.7 30.023 713.25 0.333 1.015 13665.26 15377.59 1.074 16524.38 1.209 

C22 199 40.76 30.023 917.1 0.216 1.046 14718.71 14259.74 1.056 15063.58 1.023 

C23 192 34.32 30.023 772.2 0.248 1.047 14214.54 13987.52 1.057 14794.15 1.040 

Mean         1.097  1.065 

Deviation           0.089 
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A good degree of accuracy has been obtained between the theoretical and the 

experimental results; an average ratio of 1.06 with a variation coefficient of 9% 

was achieved. 

 

Conclusions 

 

An iterative numerical procedure for the strength analysis and design of short 

and slender reinforced concrete columns with square cross sections under biaxial 

bending and an axial load using the EC2 stress-strain model is presented in this 

paper. The computational procedure takes into account the nonlinear behavior of 

the materials (i.e., concrete and reinforcing bars) and includes the second order 

effects due to the additional eccentricity of the applied axial load by the Moment 

Magnification Method.  

The capability of the proposed method and its formulation has been tested by 

means of comparisons with the experimental results reported by some authors. 

The theoretical and experimental results show that a good degree of accuracy has 

been obtained; an average ratio (proposed to test) of 1.06 with a deviation of 9% 

has been achieved. On the other hand, the compressive strength of concrete and 

its corresponding compressive strain are the most effective parameters of the 

ultimate strength capacity of column members. Consequently, the proposed 

formulation can simulate the behavior of slender members under biaxial loading 

with a good degree of accuracy. 

 

List of symbols 

 

βd : stress block factor 

Cm : equivalent column correction factor 

Fc : compressive strength of concrete 

Fy : yield strength of steel 

Pc : critical buckling load 

P : applied axial  load  

Po: axial load under pure compression 

P/Po: level of the loading 

K: strength capacity factor 

Mc: magnified moment 

Mu: Ultimate uniaxial bending moment 

MB: ultimate biaxial bending moment 

MUMS: δns: The non-sway moment magnification factor  
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