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Abstract: The only calibration method for Hydrologic Tank model in early days is using trial-
and-error. This method required much time and effort for obtaining better results since a large 
number of parameters need to be calibrated. Therefore, various Global Optimization Methods 
(GOMs) have been applied to optimize Tank model parameters automatically. In this study, 
genetic algorithm was introduced to auto-calibrate daily and hourly Tank model parameters. The 
selected study area is Bedup Basin, Samarahan, Sarawak, Malaysia. Input data used for both 
daily and hourly model calibration are rainfall and runoff only. The accuracy of the simulation 
results are measured using Coefficient of Correlation (R) and Nash-Sutcliffe Coefficient (E2). 
The robustness of the model parameters obtained are further analyzed by boxplots analysis. Peak 
errors are also evaluated for hourly runoff simulation. Results show that GA method is able to 
obtain optimal values for ten parameters fast and accurate within a multidimensional parameter 
space that could provide the best fit between the observed and simulated runoff. 

 
Keywords: Hydrological Tank model, Global Optimization Methods (GOMs), Genetic 
Algorithm (GA), Rainfall-runoff model. 
 
 
1.0    Introduction 

 
Hydrological Tank model was introduced by Sugawara and Funiyuki in 1956. This 
model assumed the watershed as a series of storage vessels and the data required for 
model calibration are only rainfall and runoff. Tank model has proven its remarkable 
ability in rainfall-runoff simulations and verifications due to its simplified model frame, 
reasonable function in runoff response and ability to provide good simulation results.  
 
However, the major work in applying this hydrological model is fitting the model 
parameters. In early days, the most common procedure for searching the model 
parameters is through trial-and-error procedure. This manual calibration process is really 
tedious and time consuming owing to the large numbers of model parameters involved 
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in the four-layered Tank model. Sometimes, the simulation results may be uncertainty 
due to the subjective factors involved. Therefore, this study has been performed to 
determine a more efficient automatic calibration procedure. 
 
According to Chen et al. (2005), the study of optimizing Tank model parameters was 
started about three decades ago. Numerous global optimization methods (GOMs) were 
adopted. GOMs including genetic algorithms (GA), simulated annealing (SA), shuffle 
complex evolution (SCE), TABU, adaptive random search, multistart powel method 
have been successfully employed in model calibration (Wang (1991); Sorooshian et al. 
(1993); Cooper et al. (1997); Yapo et. al. (1996); Kuezera (1997); Kuok et al. (2007; 
2008; 2009; 2010; 2011). All these GOMs algorithms are able to navigate numerous 
local optima present in the response surface of the conceptual rainfall-runoff model 
calibration problem. However, the most suitable GOM for optimizing Tank model 
parameters in tropical region still required further investigation.  This study investigates 
the performance of GA for calibrating daily and hourly Hydrologic Tank model for 
Bedup Basin, Sarawak, Malaysia. The programming language used for model 
development is Microsoft Visual Basic. 
 
 
2.0    Study Area 

 
The selected study area is Sungai Bedup Basin, located approximately 80km from 
Kuching City, Sarawak, Malaysia. It is non-tidal influence river basin, located at upper 
stream of Batang Sadong. The basin area is approximately about 47.5km2 and the 
elevation varies from 8m to 686m above mean sea level (JUPEM, 1975). Vegetation 
cover is mainly of shrubs, low plant and forest. The development and land use changes 
are not really significant in this rural watershed for the past 30 years. Sungai Bedup's 
basin has a dendritic type channel system. Maximum stream length for the basin is 
approximately 10km, which is measured from the most remote area point of the stream 
to the basin outlet. 
The  
The locality plan of Sungai Bedup Basin was presented in Figure 1. Figure 1a shows the 
location of Sadong Basin. Main boundary of the Sadong Basin, rainfall and river stage 
gauging stations within Sadong Basin, are shown in Figure 1b. The Bedup basin is 
upstream of Batang Sadong, where it is a non-tidal influence river basin. Figure 1c 
shows the 5 rainfall gauging stations available in Sungai Bedup Basin, namely, Bukit 
Matuh (BM), Semuja Nonok (SN), Sungai Busit (SB), Sungai Merang (SM) and Sungai 
Teb (ST), and one river stage gauging station at Sungai Bedup located at the outlet of 
the basin.  
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Figure 1: Locality map of Bedup Basin, Sub-basin of Sadong Basin, Sarawak 

 
Figure 2:  Soil Map of Bedup Basin, Sarawak (DOA, 1975) 

  

Sadong River 

N 

Bedup Outlet 

a) Location map of Sadong Basin  

b) Sadong Basin and river network (DID, 2004) c) Bedup Basin  

N 

Mrt/Nyl 

Trt/Rmn 

Mrt/Mlg/Bj
Mrt 

Mrt/Krt 

Trh/Smi 
And 

Nyl 

Mrt/Trh 



Malaysian Journal of Civil Engineering 23(2):12-28 (2011) 15 

 

  

Soil map of Bedup Basin was presented in Figure 2. In general, Bedup Basin was mostly 
covered with clayey soils, that were symbolized with Mrt, Mlg, Trt, Krt, Bjt and And. 
Clayey soil has low infiltration rate (minimum infiltration rate of 0.04 inches/hr), where 
the most of the precipitation fails to infiltrate and runs over the soil surface and thus 
produce surface runoff. Nyl, Trh, Sml are the coarse loamy soil available in Bedup 
Basin. This group of soils has higher infiltration rate (minimum infiltration rate of 1.02 
inches/hr) and therefore has moderately low runoff potential. 

 
The input data used are daily rainfall data from the 5 rainfall stations. Data series used 
for model calibration and verification are daily and hourly rainfall and runoff from year 
1990 to year 2003 that obtained from Thiessen Polygon Analysis. The area weighted 
precipitation for BM, SN, SB, SM, ST are found to be 0.17, 0.16, 0.17, 0.18 and 0.32 
respectively. The average areal daily and hourly rainfall data for that time step is then 
fed into the Tank model. The calibrated Tank model will then carry out computations to 
simulate the daily discharges for Bedup Outlet. Observed runoff data are converted from 
water level data through a rating curve given by Equation 1 (DID, 2004).  
   
Q=9.19( H )1.9                                   Eq. (1) 
                                                                                                                 
where Q is the discharge (m3/s) and H is the stage discharge (m). These observed runoff 
data were used to compare the model runoff.  
 
 
3.0    Genetic Algorithm (GA) Method 

 
Genetic algorithm was originally developed by Holland (1975).  GA starts with an initial 
set of random solutions called population. Each individual in the population is called a 
chromosome, a string of symbols representing a solution to a problem at hand. The 
chromosome evolves through successive iterations, called generations. During each 
generation, the chromosomes are evaluated by fitness function. The chromosomes will 
then pass through three main processes in GA namely selection, crossover and mutation. 
For creating the new generation, parent chromosomes are selected according to their 
fitness where the fitter chromosomes have higher probabilities of being selected. Then, 
crossover and mutation occurred to produce new offspring. The process is then repeated 
until the stop condition is satisfied. After several generations, the algorithms converge to 
the best chromosome, which represents the optimal or the suboptimal solution to the 
problem. The general structure of GA approach is shown in Figure 3 and the details of 
GA algorithm can refer to Gen and Cheng (1997).  
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Figure 3:  The general structure of GA (Gen and Cheng, 1997) 

 
 

4.0    Tank Model Parameters 
 

Since Tank model developed in 1956, it has been adopted by many water resources 
development or management agencies all over the world. This is owing to Tank model 
is not only simple and easily understood, but also able to indicate accurately the 
response for surface runoff (Kawasaki, 2003).  
 
The response of surface runoff system is explained by vertically connected plural tanks. 
The proposed Tank model consists of four storage vessels (4-Tank) that lay vertically. 
This storage type Tank model is based on hypothesis that both discharge and infiltration 
are functions of amount of water stored in the ground. Each tank has one or more outlets 
on its side and bottom. According to Kawasaki (2003), the side flow from the first tank 
(located upper-most) indicates flood or a high surface flow. The side flow from the 
second and third tanks means a normal river flow and side flow from the forth tank 
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(located bottom) is a base flow. The water infiltrating from the lowest tank recharges the 
groundwater. The schematic of the Tank model used in this study was presented in 
Figure 4. 
 

 
Figure 4:  Schematic of Tank model used in this study 

 
 

Parameters of Tank models are side outlet coefficients (C1, C2, C4, C6 and C8), bottom 
outlet coefficient (C3, C5 and C7), height of side outlets (X1, X2, X3, X4 and X5) and 
initial storages in tanks (TS1, TS2, TS3 and TS4). The coefficient calibrated 
automatically are C1, C2, C3, C4, C5, C6, C7, C8, X1, X2, X3, X4 and X5. Prior to 
calibration, parameters X3, X4 and X5 were found have little impact to model output. 
Therefore, these parameters were set to zero (0). The descriptions of calibrated 10 
parameters are tabulated in Table 1. 
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Table 1:  The description of the 10 parameters for Tank model 
No Coeff Identification Description 
1 C1 Side outlet coefficients No.1 for TS1 Surface runoff coefficient No.1 
2 C2 Side outlet coefficients No.2 for TS1 Surface runoff coefficient No.2 
3 C3 Bottom outlet coefficient from TS1 to 

TS2 
Infiltration coefficient from 
surface tank to intermediate tank 

4 C4 Side outlet coefficients for TS2 Intermediate runoff coefficient 
5 C5 Bottom outlet coefficient from TS2 to 

TS3 
Infiltration coefficient from 
intermediate tank to sub-base tank 

6 C6 Side outlet coefficients for TS3 sub-base runoff coefficient 
7 C7 Bottom outlet coefficient from TS3 to 

TS4 
Infiltration coefficient from sub-
base tank to base tank 

8 C8 Side outlet coefficients for TS4 Base runoff coefficient 
9 X1 Height of side outlets No.2 for TS1 Height of surface runoff No.2 

from surface tank 
10 X2 Height of side outlets No.1 for TS1 Height of surface runoff No.1 

from surface tank 
 

The total discharge, Q was calculated using Equation 2: 
 

Q= C1Q1 + C2Q2 + C4Q3 + C6Q4 + C8Q5 Eq. (2)                                               
 
 
5.0    Methodology 
 
5.1    Calibration for Daily Runoff 
 
Various sets of daily rainfall-runoff data were calibrated to find the best model 
configuration for simulating daily runoff at Sungai Bedup. Daily Tank model developed 
for simulating daily runoff is denoted as GA-Tank-D. GA algorithm will automatically 
select the best mutation rate ranged from 0.005 to 0.25. The parameters investigated by 
GA-Tank-D are: 
 

a) Different length of calibration data ranging from 7, 9, 11, 13, 15 and 17 months, 
from 1st Jan 1998 to 31st May 1999  

b) Relative fitness rate of 0.6, 0.7, 0.8 and 0.9 
c) 0.5, 0.6, 0.7, 0.8 and 0.9 of crossover rate  

 
The best length of calibration data for GA-Tank-D was found to be 17 months. The 
calibration process is further investigated with 6 different sets of daily rainfall-runoff 
data at secondary stage (as presented in Table 2). The aim is to find the best and most 
robust parameters set for simulating daily runoff at Sungai Bedup. Each set of 
parameters obtained will then validated with another 11 sets of daily rainfall-runoff data 
as tabulated in Table 3. Therefore, there are 66 repetitions for model calibrated with GA 
algorithms.  
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Table 2:  Details of GA-Tank-D calibration data 
Description  Date 
GASetDA 1 Jan 1998 to 31 May 1999 
GASetDB 1 Jan 1990 to 31 May 1990+1 Jul 1990 to 30 Jun 1991 
GASetDC 1 Jan 1992 to 30 Jun 1998+1 Aug 1992 to 30 Jun 1993 
GASetDD 1 Jan 2002 to 31 May 2003 
GASetDE 1 Jan 2003 to 31 May 2004 
GASetDF 1 Jan 2000 to 31 May 2001 

 
Table 3:  Validation data for daily runoff 

Item Period 
1 1 Jan 1990 to 31 May 1990 
2 1 Aug 1990 to 31 Dec 1990 
3 1 Jan 1992, 1 Apr 1992 to 31 Jul 1992 
4 1 Aug 1992 to 31 Dec 1992 
5 1 Aug 1993 to 31 Dec 1993 
6 1 Jan 2002 to 30 Jun 2002 
7 1 Jul 2002 to 31 Dec 2002 
8 1 Jan 2003 to 30 Jun 2003 
9 1 Jul 2003 to 31 Dec 2003 
10 1 Jan 2000 to 30 Jun 2000 
11 1 Jul 2000 to 31 Dec 2000 

 
 
5.2    Calibration for Hourly Runoff 

 
In order to find the best configuration, hourly Tank model, denoted as GA-Tank-H was 
developed for simulating hourly runoff. GA-Tank-H will be calibrated with 11 sets of 
hourly rainfall-runoff data and further investigated with: 
 

a)  0.5, 0.6, 0.7, 0.8 and 0.9 of relative fitness rate 
b)  Crossover rate of 0.1, 0.2, 0.3, 0.4 and 0.5 

 
The optimal mutation rate ranged from 0.005 to 0.25 is automatically selected by GA 
algorithm. Each set of parameters obtained will then validated with other 11 storm 
hydrographs. Hence, there are 121 repetitions for the experiments calibrated GA-Tank-
H. Table 4 presents 11 storm hydrographs for calibrating GA-Tank-H in searching the 
optimal tank model’s parameters.  
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Table 4:  Calibration data for GA-Tank-H 
Description Storm Date 
GASetHA 1-7 Jan 99 
GASetHB 5-8 Apr 99 
GASetHC 5-8 Feb 99 
GASetHD 8-12 Aug 98 
GASetHE 9-12 Sep 98 
GASetHF 15-18 Mac 99 
GASetHG 20-24 Jan 99 
GASetHH 26-31 Jan 99 
GASetHI 16-20 Apr 03 
GASetHJ 18-21 Jan 00 
GASetHK 9-12 Oct 03 

 
 
5.3    Objective Function 

 
Objective function selected is ordinary least squares (OLS). According to Cooper et al. 
(1997), OLS always provide better approximations of the model parameters due to its 
algebraic formulations where each of these formulations consists of a summation of the 
least squares differences for every point in the flow series. Cooper et al. (2007) had used 
this objective function when extending his works by reducing the parameter search 
space using some suitable constraints to describe the interactions between the rainfall 
and runoff processes considered. The objective function will evaluate the performance 
of the GOMs in calibrating Tank model and it will ensure that the learning error is 
getting lesser with the increase of number iterations.  
 
 
5.4    Performance Evaluation   

 
The simulated results obtained are evaluated to determine the differences between 
observed and predicted values. The accuracy of model performance are measured by 
Coefficient of Correlation (R) and Nash-sutcliffe coefficient (E2).  According to Lauzon 
et al. (2000), the R and E2 are measuring the overall differences between observed and 
estimated flow values. The formulas of these two coefficients are given in Table 5.      
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Table 5:  Formulas for R and E2 
Concept Name Formula 
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Note : obs = observed value, pred = predicted value, 


obs = mean observed values, dpre
 = mean 

predicted values and j = number of values. 
 

 
The robustness of parameters investigated are determined using Boxplots. Five sample 
statistics represented by boxplots are the minimum, the lower quartile, the median, the 
upper quartile and the maximum, in a visual display. Each storm hydrograph simulated 
by optimal configuration of Tank model’s parameters are evaluated for peak runoff. 
Error between simulated and observed peak generated by optimal configuration of GA-
Tank-H approaches are compared for 11 validation data sets.  The objective is to 
evaluate how successful the simulated runoff in approaching the observed peak.  Error 
between observed peak and simulated peak was calculated using Equation 3: 
 

 %100
_

__ x
peakobserved

peakobservedpeaksimulatedError 






 
    Eq. (3)                                           

 
 
6.0    Results and Discussion 
 
6.1    Daily Runoff Simulation 
 
The six optimal parameters sets obtained using GA calibration method is presented in 
Table 6.  Results revealed that the best parameter set is obtained using GASetDA (1 Jan 
1998 to 30 Nov 1998), where R and E2 are yielded to 0.648 and 0.6216 respectively with 
the configuration of 17 months of calibration data, relative fitness rate of 0.8 and 
crossover rate of 0.8. Generally, the result obtained is accurate with little discrepancy 
between simulated and observed runoff. The simulated peak for GA-Tank-D is always 
slightly underestimated than the observed peak, as shown in Day 180 to Day 310, and 
Day 430 to Day 510 in Figure 5. In contrast, the simulation for low discharges is slightly 
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higher than the observed data. This was presented in Figure 5 from Day 0 to Day 180, 
and from Day 310 to Day 430. Generally,  

 
 

Table 6:  Different parameters obtained using GA calibration methods 
 C1 C2 X1 C3 X4 C4 C5 C6 C7 C8 

 
GASet

DA 

 
0.000
878    

 
0.049
575   

 
7.596
24     

 
0.994
551    

 
7.017
46     

 
0.002
293   

 
0.279
663    

 
0.031
167   

 
0.422
029   

 
0.000
034 

 
GASet

DB 

 
0.000
024 

 
0.000
865 

 
14.05
05 

 
0.005
64 

 
17.45
364 

0.541
959 

0.000
005 

0.570
193 

0.170
798 

0.954
784 

 
GASet

DC 

 
0.118
948 

 
0.200
654 

 
8.736
78 

 
0.008
243 

 
14.96
426 

0.882
902 

0.000
034 

0.998
694 

0.217
036 

0.980
312 

 
GASet

DD 

 
0.000
521 

 
0.000
425 

 
8.711
54 

 
0.010
274 

 
19.76
464 

0.019
755 

0.000
008 

0.535
999 

0.715
379 

0.311
154 

 
GASet

DE 

 
0.117
447 

 
0.035
935 

 
8.049
7 

 
0.024
473 

 
8.524
44 

0.006
937 

0.000
027 

0.993
934 

0.986
356 

0.148
457 

 
GASet

DF 

 
0.034
391 

 
0.026
399 

14.79
592 

 
0.001
359 

 
5.560
7 

0.029
772 

0.000
052 

0.996
077 

0.413
989 

0.408
236 

 
 
 
 

 
Figure 5:  Optimal performance of GA-Tank-D with 17 months of calibration data, 0.8 relative 

fitness rate and crossover rate of 0.8 
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The optimal GA automatic calibration illustrated that seven parameters namely C2, X1, 
C3, X2, C5, C6 and C7 are dominant for runoff simulation. Three other parameters, C1, 
C4 and C8 that are 0.000878, 0.002293 and 0.000034 respectively, are found less 
sensitive to daily runoff generation. The values of infiltration coefficient C3, C5 and C7 
are 0.994551, 0.279663 and 0.422029 respectively. This reflected that the infiltration 
rate from first to second tank is high. The infiltration rate will be reduced from second to 
third tank and third to forth tank.  
 
To ensure the effectiveness and robustness of the GA algorithm in calibrating Tank 
model, each parameter sets obtained will then be validated with 11 independent sets of 
data to produce different flow series. Therefore, the experiments consisted of 66 
repetitions. Boxplots is used to show the quartile distributions of R and E2 performances 
for GA at different parameters set and different time frame as presented in Figure 6. The 
six different parameters sets are compared according to their robustness and accuracy, 
where the robust method was the one with little variability. 

 

     
a) Boxplots of R for GA-Tank-D                            

 

 
b) Boxplots of E2 for GA-Tank-D 

 
Figure 6:  Boxplots of GA-Tank-D for validating 11 data sets 
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Boxplots analysis revealed that GASetDA produced highest median with R=0.690 and 
E2=0.6093 among the 6 calibration sets (refer Figure 6). Upper quartile of R=0.766 and 
E2=0.7635 are obtained, while the lower quartile of R=0.644 and E2=0.4872 are 
obtained for GASetDA. The maximum and minimum R recorded for GASetDA are 
0.779 and 0.636 respectively. Where else, the maximum and minimum E2 are found to 
be 0.7841 and 0.3864 respectively.  
 
  
6.2    Hourly Runoff Simulation 

 
Eleven sets of single storm event were calibrated using GA optimization method and the 
results are tabulated in Table 7. GASetHF is the best parameters set obtained using 
single storm on 15 to 18 Mac 1999, with the relative fitness rate of 0.8 and crossover 
rate of 0.1. 

 
Table 7:  Optimal parameters obtained using GA algorithm with different dataset 

 C1 C2 X1 C3 X4 C4 C5 C6 C7 C8 
GAS
etHA 

0.041
672 

0.272
144 

0.000
237 

0.001
655 

0.035
84 

0.991
883 

0.056
497 

0.105
158 

18.42
204 

12.94
972 

GAS
etHB 

0.906
979 

0.151
178 

0.006
531 

0.000
106 

0.056
608 

0.951
583 

0.053
953 

0.079
236 

1.470
62 

4.125
3 

GAS
etHC 

0.003
248 

0.007
562 

0.014
901 

0.061
953 

0.063
003 

0.065
483 

0.731
622 

0.996
964 

1.818
16 

18.34
346 

GAS
etHD 

0.685
63 

0.399
342 

0.002
915 

0.001
956 

0.060
863 

0.949
345 

0.072
79 

0.075
697 

10.24
762 

16.45
502 

GAS
etHE 

0.654
203 

0.888
05 

0.001
684 

0.219
454 

0.173
99 

0.996
961 

0.027
309 

0.122
059 

2.696
02 

7.958
1 

GAS
etHF 

0.198
868 

0.030
931 

0.005
819 

0.003
186 

0.054
817 

0.971
401 

0.157
37 

0.058
961 

10.82
168 

8.646
44 

GAS
etHG 

0.024
976 

0.023
563 

0.000
198 

0.000
692 

0.029
719 

0.897
316 

0.083
876 

0.101
906 

12.71
422 

17.15
306 

GAS
etHH 

0.635
164 

0.274
036 

0.002
382 

0.003
704 

0.074
463 

0.988
949 

0.047
026 

0.324
104 

6.168
26 

17.49
068 

GAS
etHI 

0.499
056 

0.702
753 

0.006
134 

0.869
972 

0.111
811 

0.982
054 

0.012
687 

0.884
571 

15.62
088 

14.15
532 

GAS
etHJ 

0.107
61 

0.205
061 

0.005
846 

0.016
876 

0.058
136 

0.974
358 

0.109
147 

0.067
362 

14.15
238 

3.053
3 

GAS
etHK 

0.773
552 

0.478
9 

0.002
694 

0.017
734 

0.169
918 

0.981
232 

0.033
574 

0.078
26 

2.993
06 

12.14
994 

 
 

Figure 7 presents the best storm hydrograph calibrated by the optimal configuration of 
GA algorithm where the optimum R and E2 values are obtained with high accuracy of 
0.948 and 0.9051 respectively. However, it was observed that the simulated peak is 
slightly lower than the observed peak. 
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Figure 7:  Comparison between observed and optimal simulated storm hydrograph using GA 

 
GASetHF demonstrated that all parameters are strongly affecting the hourly runoff 
generation except C1, C3, C4, C5 and C7. Infiltration coefficient C3, C5 and C7 are 
found to be 0.000237, 0.03584 and 0.056497 respectively. The small values of 
infiltration coefficient reflect that the infiltration rate for Bedup Basin, which is mostly 
covered by clayey soil is very little.  

 
The simulated peak for optimal configuration GASetHF was compared with observed 
peak. Table 8 presents the comparison between observed and simulated peak flow, error 
(%) between observed and simulated peak flow for optimal configuration of GA 
algorithm when validating 11 storms hydrograph.  
 
 

Table 8:  Comparison between observed and simulated peak flow for GASetHF 
  

Storms 
Observed 

Peak 
Simulated 

Peak Error (%) 
1998 Aug 8-12 25.75 30.64 18.97 
1999 Jan 1-7 34.63 35.33 2.02 
1999 Apr 5-8 18.37 14.08 23.39 
1999 Feb 5-8 14.26 15.53 8.92 
1998 Sep 9-12 40.40 44.98 11.34 

1999Mac 15-18 13.20 13.18 0.14 
1999 Jan 20-24 20.36 24.37 19.68 
1999 Jan 26-31 28.37 28.97 2.11 
2000 Apr 5-8 22.45 28.11 25.23 

2000 Jan 18-21 22.18 16.41 26.03 
2003 Oct 9-12 19.36 20.68 6.84 

Average Error   13.15 
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It was found that average error (%) between simulated and observed peak for GASetHF, 
is 13.15%. These simulated peaks can be used as early warning flow forecaster to take 
necessary flood protection measures before a severe flood occurs.The accuracy was 
expressed as R and E2 of the simulated flow series generated by the parameter set found 
in the search. The R and E2 obtained are analyzed using boxplots (presented in Figure 
8). The eleven optimized parameters sets were compared according to their robustness 
and accuracy, where the robust method was one which had little variability. 
 

 

 
a) Boxplots of R for GA-Tank-H. 

 
 

 
b) Boxplots of E2 for GA-Tank-H. 

 
Figure 8:  Boxplots of GA-Tank-H for validating 11 storms hydrograph 

 
 
The median R obtained by GASetHF is 0.883. When E2 is referred, median E2 provided 
by GASetHF is 0.8003. However, the minimum E2 value of 0.3911 was not considered 
in boxplots analysis. Besides, the upper quartile and lower quartile of R for GASetHF 

2 



Malaysian Journal of Civil Engineering 23(2):12-28 (2011) 27 

 

  

are found to be 0.9203 and 0.8352 respectively, where else 0.8264 and 0.7057 for E2. 
Meanwhile, boxplots also presented that the maximum and minimum R recorded are 
0.9725 and 0.8185 respectively. In contrast, 0.9111 and 0.5791 are the maximum and 
minimum values recorded for E2. Besides, boxplots also revealed that GASetHF has 
smallest variability for both R and E2 than other parameters set. Therefore, GASetHF is 
best parameters set in this study for hourly runoff simulation. 

 
.  

7.0    Conclusion 
  
These results revealed that GA method is able to calibrate the daily and hourly Tank 
models accurately. The study demonstrated that GA optimization search method has 
proved to be robust, efficient and effective in searching optimal Tank model parameters. 
By providing the best fit between observed and simulated flows, GA methods has 
proven its ability in searching the optimal parameters.  
 
The methodology has been tested for rural catchment in humid region. Hydrologic Tank 
model clearly manage to demonstrate the ability to adapt to the respective lag time of 
each gauge through training, learning or calibration. Rainfall and runoff as inputs are 
sufficient to develop an accurate hourly rainfall-runoff model.  
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