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Abstract: This paper intends to provide an equivalent method for the evaluation of natural 

frequency of isotropic and orthotropic thin rectangular plates with different restraint conditions. 

Starting from a simple and a general approximate formula for the frequency, which is the 

extension of Hearmon’s expressions presented for the fundamental mode; it is shown how to 

calculate the fundamental mode of isotropic and orthotropic rectangular plates using the proper 

coefficient values already available in the scientific literature.  For the higher modal frequencies, 

a particular form of Rayleigh’s method is proposed, leading to a simple procedure to calculate the 

fundamental frequency. In fact the frequency calculation is reduced to the evaluation of the 

fundamental frequency of a special plate associated with the real one. An extensive finite element 

investigation was carried out to test the accuracy of this analytical short cut method. In addition a 

comparative study has shown good agreement between the frequencies responses obtained from 

both analytical (equivalent method) and finite element solution using ANSYS program. This 

method allows us to both avoid huge calculations, and produce a fast and simple approximate 

calculus of free vibration frequencies.  This in turn is a necessary part of the preliminary design 

phase and the general and immediate verification of a construction project to its completion. 

 

Keywords: Free Vibration, thin rectangular plate, isotropic, orthotropic, nodal lines position, 

Rayleigh’s method. 

 

 
1.0  Introduction  

 

Use of structures made of orthotropic plates requires an investigation to develop a 

precise and confident design. In this area, from an engineering point of view, finite 

element method (FEM) provides a complete solution to the problem of evaluating 

modes of vibration and dynamic response of an orthotropic plate when the limits of the 

material properties and conditions are known. However during the early stages of 
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project design, where the main task is to select dimensions and material properties, as 

well as apply quality controls for the precision of the design by means of calculation by 

(FEM), it is very useful to have a simplified method to calculate modal frequencies of 

orthotropic rectangular plates. Nowadays it is possible to find a large number of 

contributions to the solution of this problem, where different techniques have been used 

and which involve the use of plates under a variety of edge and shape conditions (G.B. 

Warburton).  Hence, it is theoretically possible to calculate exact solutions of frequency 

only for the case of a plate with simply supported sides. For this reason, considerable 

efforts are made to develop approximate methods with more accuracy. A series of 

articles on the dynamic behaviour of composite plates and sandwiches have been 

summarised by Leissa (1987) and Bert (1982). 

 

A structure is complex if any analytical solution thereof is impossible or is obtained 

from delicate calculations. This definition is applied to plate’s structures. And we also 

say that such a method is equivalent if it allows us to calculate a structure with 

approximate methods while not exceeding a certain percentage of error. We will 

therefore use these methods to find equivalent solutions for plates structures in free 

vibration. This method began with the article of Hearmon (1946) who initiated the study 

of some particular cases. Hence, to calculate the fundamental mode of an orthotropic 

rectangular plate with different conditions of fixity, different values  of coefficients have 

been used by Hearmon. In addition for higher modes of modal frequencies, a special 

form of Rayleigh’s method is proposed by Biancolini (2005). Thus evaluation of higher 

frequencies is reduced to the calculation of the fundamental frequency of plates under 

the original plate.  

 

 

2.0    Problematic and Application 

 

In this work, the problem of approximating frequencies for orthotropic plates is 

investigated.  Based on a general formula of approximate frequency, as proposed by 

Hearmon, the calculation of the basic mode is shown for an orthotropic rectangular plate 

with different fixity conditions, using coefficient values that already exist in scientific 

literature (Hearmon, 1946).  In addition to higher modes of frequencies, a particular 

form of Rayleigh's method is proposed, leading to a simple procedure for calculation of 

fundamental frequency.  In fact, calculation of higher frequencies is reduced to the 

evaluation of the fundamental frequency of a specific equivalent plate associated with 

the actual original one. 
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3.0   Analysis Method: 

 

It is important to note the following rectangular plate’s characteristics:  

 

 The nodal line is rectilinear and rectangular to the edges 

 They divide the plate in sub plates that vibrate at the same value as ω. 

 Nodal line presents zero displacements. 

 

3.1. Vibratory analysis of rectangular plates with homogeneous supports: 

 

For the first frequency of orthotropic rectangular plates, Hearmon proposed the 

following equation: 

 

h

D
f





2


            

(1)    Where 
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Where; 
 Ex, Ey: Young’s modulus in bending for x and y direction respectively. 

Gxy: Shear modulus in bending for xy plane. 

Υxy and υyx Poisson’s ratio corresponding to compressive strain 

x, y, z axis of the reference system 

a: length of side parallel to x-axis  b: length of side parallel to y-axis  

h: plate thickness    ρ: mass density of the material 

ω: circular frequency   f: frequency equal to  ω/2π 

S: Simply supported support  C: Clamped support  

     

 

Application of the quantitative method based on A, B, C coefficients, which are 

obtained from a table for the values of λ parameter (see appendix). In order to justify the 

efficiency of this method, an example of orthotropic plate of 1.5 ratios i.e.   
 

 
     

for three cases of fixities SSSS, CCCC and SSCC have been calculated. Their results are 

showed for each case consecutively.  
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3.1.1. Orthotropic plate SSSS 

 

a) Mode 1*1 

 

 

 

 

 

 

 

 

 

 

 

 

The circular frequency for mode 1*1 is obtained by the following equation: 

 

 (3) 

 

 

   
   

 

   
                 

   
 

   
          

    
 

  
 

                                                             

 

 

 

 

b) Mode 1*2 

 

 

 

 

 

 

 

 

 

 

 

 

 

The plate develops a modal sequence with two sub plates SSSS where the nodal line 

position is symmetrical because of the symmetry of the extreme supports SS.   
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The circular frequency for mode 1*2 is obtained by the following equation: 

 

 

(4) 

 

 

 

 

c) Mode 2*1 

 

 

 

 

 

 

 

 

 

 

 

 

The plate develops a modal sequence with two sub plates SSSS where the nodal line 

position is symmetrical because of the symmetry of the extreme supports SS.   

 

The circular frequency for mode 2*1 is obtained by the following equation: 
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d) Mode 2*2 
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The plate develops a modal sequence with four sub plates SSSS where the nodal lines 

positions are symmetrical because of the symmetry of the extreme supports SS and SS.   

The circular frequency for mode 2*2 is obtained by the following equation: 
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Figure 1: Comparative results of F.E.M and New Method for SSSS orthotropic plate 
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3.1.2. Orthotropic plate CCCC 

 

a) Mode 1*1 

 

 

 

 

 

 

 

 

 

 

 

 

The circular frequency for mode 1*1 is obtained by the following equation: 
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b) Mode 1*2 

 

 

 

 

 

 

 

 

 

 

 

 

The plate develops a modal sequence with two sub plates CCSC and SCCC where the 

nodal line position is symmetrical because of the symmetry of the extreme supports CC.   

The circular frequency for mode 1*2 is obtained by the following equation: 
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c)  Mode 2*1 

 

 

 

 

 

 

 

 

 

 

 

 

The plate develops a modal sequence with two sub plates CCCS and CSCC where the 

nodal line position is symmetrical because of the symmetry of the extreme supports EE. 

The circular frequency for mode 2*1 is obtained by the following equation: 
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d) Mode 2*2 
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The plate develops a modal sequence with four sub plates CCSS where the nodal lines 

positions are symmetrical because of the symmetry of the extreme supports CC and CC.   

The circular frequency for mode 2*2 is obtained by the following equation: 
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Figure 2: Comparative results of F.E.M and New Method for CCCC orthotropic plate 

NOTE: This analysis can be extended to all higher modes 

 

3.2. Vibratory analysis of rectangular plates with non-homogeneous supports: 

 

Vibratory analysis of rectangular plates with non-homogenous support may be made in 

the same manner, only we are confronted by the case where extreme supports are not 

symmetrical and thus we will have sub plates which are not symmetrical [a1 and (a - a1) 

for x direction and b1 and (b - b1) for y direction]. In this case, we suppose that two sub 

plates vibrate at the same frequency in order to calculate the nodal line position. For 

example, plate SSCC for mode 2x1 will give us two sub plates SSCS and SSCC.  
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Sub plate SSCS 
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Because plate vibrate at the same frequency, we will have ω21[SSCC] = ω21[SSCS] : 
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And we will calculate a1 value. This operation may be executed for all others non 

homogenous supports.  
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Figure 3:  Comparative results of F.E.M and New Method for SSCC orthotropic plate 

 

 

4.0 Conclusions and Recommendations 

 

The equivalent method based on the principle of Hearmon method and sub-plates 

principle has permitted to calculate frequencies for higher modes using simple formulas. 

Hence calculus of frequencies for higher modes of plate is reduced to calculus of the 

considered sub-plates. For future recommendations, since this method is quite general 

for isotropic and orthotropic rectangular plates, it seems possible to extend it to force 

and free vibration analysis as well as others support cases. 
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Appendix: 

 

     Conditions of fixities  Parameter λ (Hearmon, 1959) 
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