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Abstract: The paper presents an improvement procedure for streamflow simulation at gauged 

site of a semi-distributed river basin model. In addition to streamflow and precipitation, 

meteorological observations that are not employed in the HEC-HMS model calibration are used 

as inputs in the procedure. Some of the available meteorological variables may be of limited 

values in calibrating a large range of streamflow hydrographs for obtaining the optimum state 

variables and parameters of a river basin model. This study presents the integration of the 

Bayesian regularization neural network with the HEC-HMS model to provide most accurate 

streamflow simulations at gauged site, for a wide range of streamflow hydrographs pertinent to 

the hydrometeorological conditions. The artificial neural network is capable of generating a good 

generalization with given hydrometeorological patterns. 
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1.0 Introduction 

 

The hydrometeorological observations and a rainfall-runoff model are the basic 

components of streamflow simulation study in a river basin. They provide accurate 

streamflow simulation for prediction, planning and management of the water resources. 

The hydrometeorological observations include streamflow, precipitation and various 

meteorological data. The rainfall-runoff model may use some of the 

hydrometeorological data in the simulation of hydrological processes to produce 

streamflow hydrograph as output. Rainfall-runoff modeling can be done using either an 

empirical, conceptual or physically based model. According to the spatial distribution of 

hydrologic parameters, those models can be lumped, semi-distributed or distributed 

(Beven 2001; Cunderlik 2003). In many studies, the deterministic physically based 

models use mathematical representations to describe the selected hydrological 

processes, as well as a number of state variables and also parameters of the model. 
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Model calibration using a large number of time series observation data provides values 

for model parameters. However, models may not be ideal for accurately simulating 

streamflow for a wide range of hydrometeorological conditions.  Uncertainty in model 

output can be resulted by the model limitations: (i) model structure; (ii) time variation; 

(iii) insufficient data; and other factors.  

 

The output error of gauged site in a deterministic physically based model can be reduced 

by implementing an updating procedure based on the artificial neural network (ANN) 

technique. Neural network is an adaptive system, capable of learning nonlinear 

hydrological functions between inputs and outputs without analyzing the internal 

structure of the hydrological processes. This technique provides improvement to the 

model performance with faster model development and shorter computation time. 

 

The neural network method is widely used in hydrological applications over the last two 

decades. A few studies have been conducted to review the theory and applications of the 

ANN in hydrology (ASCE 2000; Govindaraju and Rao 2000). Previous studies have 

also shown that ANNs are appropriate for modeling nonlinear relationships of rainfall-

runoff processes (Zealand et al. 1999; Rajurkar et al. 2004; Ahmad and Simonovic 

2005; Cullmann et al. 2006; Akhtar et al. 2009); stream flow forecasting (Anctil et al., 

2004; Moradkhani et al., 2004; Kisi, 2007); precipitation forecasting (Toth et al., 2000; 

Luk et. al., 2001); river stage forecasting (Thirumalaiah and Deo, 1998; Bhattacharya 

and Solomatine, 2000; Liong et al., 2000); and groundwater modeling (Rogers and 

Dowla, 1994; Coulibaly et al., 2001). Meteorological data (such as, air temperature, 

snowmelt or snow depth, relative humidity, sunshine hours, evapotranspiration, number 

of cloudy days, ENSO index, wind velocity, wind direction etc.) were included in the 

research to improve the ANN prediction (Poff et al., 1996; Dolling and Varas, 2002; 

Anctil and Rat, 2005; Jain and Srinivasulu, 2006; Wardah et al., 2008; Aytek et al., 

2008). There are many different updating approaches available in the hydrologic 

literatures that are most appropriate for the study of rainfall-runoff processes in the 

gauged watersheds. (Xiong and O’Connor 2002; Anctil et al., 2003; Abebe and Price, 

2004; Xiong et al., 2004; Goswami et al., 2005; Abrahart and See, 2007). It was found 

that various input-output combinations of observations and/or simulated results used in 

these procedures could minimize the associated uncertainty, and improve the overall 

efficiency of the hydrological model. The most common updating approaches include 

the use of optimization methods in the ANN weight updates, use of output error of a 

physically based model in the streamflow forecasting, emulation of hydrological 

knowledge in a numerical model, and the development of a hybrid system coupled by 

two (or more) linear and/or nonlinear models.  

 

In this study, an updating approach is introduced to improve the errors in simulated 

discharge at gauging station over a river basin with the assistance of ANN model (the 

Levenberg-Marquardt algorithm with Bayesian regularization), using available 

additional hyrometeorological data. 



Malaysian Journal of Civil Engineering 25(2):239-253(2013) 241 

 
The paper starts with the presentation of a model output updating methodology in the 

next section. The implementation of the methodology to Mitchell gauging station of the 

Upper Thames River basin follows. The paper ends with the presentation of results and 

conclusions obtained from the study. 

 

 

2.0 A Methodology for Output Updating a River Basin Model  

 

The calibration of hydrologic model for gauged river basin using a large number of 

streamflow hydrographs is a very tedious and time-consuming process. The model 

calibration was performed manually by trial-and-error process of adjusting parameters 

via visual inspection to judge the goodness of fit of the model simulations to 

observations. The study presented in this paper introduces a new procedure based on the 

ANN technique for reducing the output error of a deterministic physically based model 

to gauging river basin. One of the advantages of this procedure is the inclusion of 

additional real-time data on the hydrometeorological environment. While the additional 

real-time data is not used in the model calibration, it is used by ANN model to provide 

more accurate flow values for a wide range of flow hydrographs. Other advantages of 

this procedure are that it can consume less computation time and provides faster and 

more accurate updates for the output errors of the physically based model for both recent 

and future flow hydrographs.  

 

The overall output updating procedure for the physically based model, as illustrated in 

Figure 1, is presented next.  First, the physically based model is run by using input 

variables to compute the streamflow values. The neural network model (a multilayer 

feed-forward network with the Levenberg-Marquardt algorithm and Bayesian 

regularization) is then applied by using available hydrometeorological observation data 

to improve the output error of the physically based model for the selected gauged 

streamflow site in a watershed. The steps in the proposed methodology based on the 

computational engine of the HEC-HMS (USACE, 2000) are summarized as follows: 

 

1. Estimate the streamflow error at the gauged site of the HEC-HMS model, 

)1( tegHMS  as: 

  

 )1()1()1(  tQtQte gHMSogHMS   (1) 

  

where, )1( tQo is an average observed streamflow and )1( tQgHMS  is the HEC-

HMS computed flows at the gauged site, and t = 1 to N is the time step. 
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2. Determine the improved streamflow value(s) at the gauged site(s), )(tiQgHMS , as 

below: 

 

)()( tQtiQ gANNgHMS 
                             (2)      

)(tQgANN  f(egHMS(t-1); Qo(t-1); and other available meteorological data)  (3) 

 

 

The streamflow error ( )1( tegHMS ) is improved with the assistance of the ANN 

approach. The simulated streamflow generated by the ANN model, )(tQgANN , as 

shown in Eq. 2, becomes the improved streamflow at the gauged site, )(tiQgHMS . 

The previous and/or recent streamflow error, observed streamflow, mean-areal 

rainfall and snowmelt, and additional meteorological variables are used by the 

ANN model in the output updating procedure. 

 

The next section of the presented methodology is the Levenberg-Marquardt algorithm 

with Bayesian regularization, and the model evaluation criteria. 

 

 
 

Figure 1: Schematic diagram of the output updating procedure 
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2.1 The LM Algorithm with Bayesian Regularization 

 

The Bayesian regularization neural network can ensure accurate prediction of flow 

values, through automatically avoiding the overfitting and underfitting of the datasets. It 

also applies an early learning stopping procedure as soon as the overtraining signal starts 

to appear. In many applications, a multilayer feed-forward network associated with the 

Levenberg-Marquardt (LM) algorithm using Bayesian regularization had proven faster 

and more effective in finding optimal results (Foresee and Hagan, 1997; Anctil et al., 

2003; Parent et al., 2008). The LM algorithm that belongs to the second-order nonlinear 

optimization techniques usually demonstrates the best performance (Hagan and Menhaj, 

1994). In the Bayesian framework, a term that consists of mean of the sum of squares of 

the network weights and biases, Fw, is automatically added, to the mean sum of squares 

of the network errors, Fe, to improve generalization, as below (MacKay, 1992):    

 





M

i

i

N

i

iwe WeFFF
11

2   (4) 

 

where, F is the error function; e, is the network error, the difference between the desired 

flow, Qo, and the network output, QgANN, for N number of training inputs; W is the 

network weights and biases for M total number of weights;  and  are the error 

function parameters.  

 

 

2.2 Model Performance Criteria 

 

The performance predictions of the ANN model and physically based model at the 

gauged streamflow location are evaluated for training, testing and validation datasets.  

The overall performance of the ANN model is evaluated using the coefficient 

correlation of linear regression, R, in Eq. 5. A high number of R = 1.0 means perfect 

statistical correlation. The success measurement of sensitivity analysis for choosing the 

input variables is based on the root mean square error (RMSE), given by Eq. 6, which 

measures the level of fitness between the ANN model output and the observed data. The 

peak flow criterion (PFC) in Eq. 7, is used to identify the more accurate ANN model for 

flood flow simulation. The mean absolute error (MAE), given by Eq. 8, measures the 

global goodness of the fit of the forecasted error (the difference between the observed 

data and the model predicted output). The correlation between the predicted hydrograph 

and the observed hydrograph is evaluated using the Nash-Sutcliffe coefficient of 

efficiency (Nash and Sutcliffe, 1970), EI, given by Eq. 9, which ranges from negative 

infinity to 1.0.  An EI value of 1.0 means a good agreement between the observed and 

predicted hydrographs. Finally, both observed and predicted streamflow hydrographs for 

the validation dataset are plotted for visual evaluation of the output for periods of low 

and high streamflows. 
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where Q̂  is the ANN predicted streamflow for the gauged location, Q is the observed 

streamflow at t, recent time step, Qave is the average streamflow; N is the number of 

observations, and NP is the number of peak flows greater than one-third of the mean 

peak flow. 

 

 

3.0 Case Study 

 

The proposed methodology for output updating on gauged sites of a physically based 

model is presented using the study of the Upper Thames River (UTR) watershed, 

located in the southwestern Ontario, Canada. The region is comprised of four counties 

such as Perth, Middlesex, Huron and Oxford. There are two main tributaries of the 

Thames River: the North branch (1,750 km
2
) and the East branch (1,360 km

2
). They 

converge at forks near the centre of the city of London. The Thames River then flows 

westwards and exits the outlet of watershed near Byron. The slope at the upper reaches 

of the Thames basin is close to 1.9 m/km and much flatter at lower reaches - less than 

0.2 m/km (after Wilcox et al., 1998). The dates of more recent floods in this watershed 

include March 1977, September 1986, July 2000, April 2008, and December 2008 

http://www.thamesriver.on.ca/Water_Management/July_2000_flood_photogallery.htm
http://www.thamesriver.on.ca/Water_Management/April_2008_flood.htm
http://www.thamesriver.on.ca/Water_Management/December_2008_flood.htm
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(UTRCA, 2009). Flooding most frequently occurs after the spring snow melts and 

summer storms (Prodanovic and Simonovic, 2006). 

 

The rainfall-runoff model for the UTR watershed was originally developed using the 

Hydrologic Modeling System (HEC-HMS) version 2.2.2 (USACE, 2000), a product of 

the Hydrologic Engineering Center within the U.S. Army Corps of Engineers. The 

details of this work can be found in the report by Cunderlik and Simonovic (2004). The 

HEC-HMS hydrologic model for the Upper Thames River watershed, as illustrated in 

Figure 2, consists of thirty two sub-watersheds, twenty one river reaches, and three 

reservoirs. The hydrologic model is divided into a number of modules. Firstly, the snow 

module is used separately to provide the precipitation and temperature input adjustments 

and to simulate solid precipitation accumulation and melt. The rainfall and snowmelt is 

then used as the input data in the calibrated HEC-HMS model for the water losses 

estimation. The losses module accounts for the amount of water moisture movement 

through various conceptual reservoirs within a watershed, canopy, land surface, soils, 

and groundwater. The losses module output includes evapotranspiration, surface excess, 

baseflow, and ground water recharge. The surface excess is used by the transform 

module to generate surface runoff.  This is done by performing a convolution of the unit 

hydrograph with the precipitation excess. The surface runoff is then combined with the 

baseflow to produce the direct runoff. Finally, the flood routing computation module 

uses the direct runoff as input to propagate the flood wave along a stream channel. 

 

 

3.1 The Input Data for Output Updating 

 

The daily meteorological data from the nearest monitoring sites, such as Stratford (solar 

radiation), Wildwood Dam (evaporation) and London (air temperature, wind speed, 

wind direction, air station pressure, visibility, and humidity) are used in the procedure. 

These daily historic datasets are obtained from Environment Canada (EC) and the Upper 

Thames River Conservation Authority (UTRCA). A gauged streamflow of Mitchell 

river basin of the UTR watershed is selected to illustrate the output updating of the 

HEC-HMS continuous hydrologic model. The Mitchell SG in Figure 2 represents the 

Mitchell gauged site of the HEC-HMS model. The Mitchell river basin receives 921-

1144 mm of annual precipitation (from year 2001-2005) and 4.9 m
3
/s of estimated 

annual discharge. This river basin with 173 km
2
 (5% of the UTR watershed) covers 93% 

agriculture, 5% forest and 2 % urban. The watercourse (total length 194 km) contributes 

36% of the flow to the North Thames at Fanshawe Dam and 11% of the flow to the 

Thames downstream of London (UTR Watershed Report Cards, 2007).  
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Figure 2: The HEC-HMS continuous hydrologic model of the UTR watershed 

 

 

3.2 The Neural Network Model  

 

The ANN input data includes the discharge error, average streamflow, average rainfall 

and snowmelt and meteorological variables (such as average visibility, average relative 

humidity, average wind speed, maximum solar radiation, minimum air station pressure, 

average evaporation, average air temperature, and average wind direction) at current and 

previous time steps. The autocorrelation and cross-correlation analyses are adopted to 

find all possible input variables for the ANN model. Table 1 shows the best correlation 

coefficient results (with lag-times up to 4 days) computed with 95% confidence interval 

for the input variables. For example, the Mitchell streamflow with lag-times of 1- to 3-

day (Qt-1, Qt-2 and Qt-3); the average adjusted precipitation with lag-times of 0- to 2-day 

(NPt, NPt-1, and NPt-2); and most of other meteorological variables with lag-time 1-day 

(e.g. Ht-1) are considered as potential input variables correlated with the current day 

Mitchell streamflow forecast (Qt).  

 

Mitchell river basin 
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Table 1: The autocorrelation (A) and cross-correlation (C) results for Mitchell streamflow 

Lags A(Q) C(NP) C(Sr) C(H) C(SP) C(T) C(V) C(Wd) C(Ws) C(E) 

0 1.0 0.1 -0.2 0.1 -0.2 -0.1 -0.1 0.1 0.2 -0.2 

1 0.7 0.4 -0.2 0.2 -0.2 -0.1 -0.2 0.0 0.2 -0.2 

2 0.5 0.3 -0.2 0.2 -0.1 -0.1 -0.2 -0.1 0.1 -0.2 

3 0.3 0.1 -0.1 0.1 0.0 -0.1 -0.1 -0.1 0.1 -0.2 

4 0.2 0.1 -0.1 0.1 0.0 -0.1 -0.1 0.0 0.1 -0.2 

 

where e is the output/discharge error of HEC-HMS (m
3
/s); Q is the average flow (m

3
/s); 

NP is the total rainfall and snowmelt (mm); V is the daily average visibility (km); H is 

the daily average relative humidity (%); Ws is the daily average wind speed (km/h); Sr is 

the daily maximum solar radiation (MJ m
-2

 day
-1

); Sp is the daily minimum air station 

pressure (kPa); E is the daily average evaporation (mm day
-1

); T is the daily average air 

temperature (
o
C); Wd is the daily average wind direction (10’s Deg); and t is the recent 

time and delayed daily three times t-1, t-2 and t-3.  

 

 
Table 2: ANN input variables for Mitchell station 

M1: 

M2: 

M3: 

M4: 

M5: 

M6: 

M7: 

M8: 

M9: 

M10: 

M11: 

M12: 

M13: 

M14: 

M15: 

M16: 

M17: 

M18: 

M19: 

M20: 

M21: 

M22: 

et-1 

et-1 and Qt-1 

et-1 , Qt-1 and Qt-2 

 et-1 , Qt-1, Qt-2 and Qt-3 

et-1, Qt-1, NPt, and NPt-1 

et-1, Qt-1, NPt, NPt-1 and NPt-2 

et-1, Qt-1, NPt-1 and NPt-2 

et-1, Qt-1, NPt, NPt-1 and Tt-1  

et-1, Qt-1, NPt, NPt-1 and Et-1 

et-1, Qt-1, NPt, NPt-1 and Srt-1 

et-1, Qt-1, NPt, NPt-1 and Wst-1 

et-1, Qt-1, NPt, NPt-1 and Spt-1 

et-1, Qt-1, NPt, NPt-1 and Vt-1 

et-1, Qt-1, NPt, NPt-1 and Ht-1 

et-1, Qt-1, NPt, NPt-1 and Wdt-1 

et-1, Qt-1, NPt, NPt-1, Spt-1 and Vt-1 

et-1, Qt-1, NPt, NPt-1, Spt-1, Vt-1 and Ht-1 

et-1, Qt-1, NPt, NPt-1, Spt-1, Vt-1, Ht-1 and Wst-1 

et-1, Qt-1, NPt, NPt-1, Spt-1, Vt-1, Ht-1, Wst-1 and Srt-1 

et-1, Qt-1, NPt, NPt-1, Spt-1, Vt-1, Ht-1, Wst-1, Srt-1 and Et-1 

et-1, Qt-1, NPt, NPt-1, Spt-1, Vt-1, Ht-1, Wst-1, Srt-1, Et-1 and Tt-1 

et-1, Qt-1, NPt, NPt-1, Spt-1, Vt-1, Ht-1, Wst-1, Srt-1, Et-1, Tt-1 and Wdt-1 
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Based on the result from correlation analysis, different daily neural network input 

variables are developed that may highly correlated with the recent observed Mitchell 

streamflow, as summarized in Table 2. Sensitivity analyses are experimented on these 

input variables to find the best input variables and number of hidden nodes, for the ANN 

model with the Levenberg-Marquardt optimum algorithm and Bayesian regularization. 

From Tables 2 and 3, the input configuration M12 with station pressure variable has the 

minimum RMSE value of 3.51 m
3
/s when compared with the model configurations M8 

to M15 using other meteorological variables. In the case of M16 to M22, the analysis 

considers humidity, wind speed, solar radiation, air station pressure, evaporation, air 

temperature and lastly winds direction. These variables are not used in the output 

updating process. Multilayer feed-forward networks with a range of 5 to 20 hidden 

nodes are successively trained, and the best performance with the validation dataset is 

obtained within a pool of 25 repetitions. This implies that the selected configuration is 

among the top 14% of the distribution of all possible configurations, with 95% 

confidence, according to Iyer and Rhinehart (1999). The datasets used for training, 

testing and validating the ANN model, as in Table 4, are selected by implementing data 

cross-validation, extreme data partition, and trial and error methods. This result suggests 

improvement in the RMSE value of the trained network when additional meteorological 

data is used. For example, the optimal input configuration M12 with 5 input variables 

and 12 hidden nodes for a given training dataset, offers the minimum RMSE value of 

3.51 m
3
/s. The best ANN input configuration is presented as below for Mitchell station:  

 

 Q(t) = f(e(t-1), Q(t-1), NP(t), NP(t-1), Sp(t-1)).  (10)    

 

The trained network is then validated with unknown dataset. The comparison result of 

performance predictions of the neural network model and the HEC-HMS model for 

Mitchell station is presented in Table 4. The ANN model results for all datasets show 

that the Bayesian regularization network offers more accurate streamflow values 

compared to the HEC-HMS model. To provide for further comparison, the ANN 

simulated flow hydrograph is plotted in Figure 3.  

 

 

4.0 Results and Discussions 

 

The ANN training and test datasets in Table 4 presents the most accurate streamflow 

values with MAE about 1.600 m
3
/s; slightly higher value of EI up to 0.890; smaller value 

of PFC than 0.255 and perfect fit the observed streamflow with R greater than 0.940. 

The overall performance measures for the HEC-HMS model with the training and test 

datasets are not as good:  larger MAE up to 4.504 m
3
/s; very low value of EI = 0.097; 

higher value of PFC up to 0.569; and lower value of R than 0.472 when compared to the 

ANN model. The negative value of EI = 0.341 on test dataset indicates that the output of 

the HEC-HMS model gives the more reliable mean of observed streamflow values. The 

ANN model performance for the validation dataset is also superior. This can be seen 
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from the comparison with the HEC-HMS model: lower value of MAE equal to1.513 

m
3
/s opposed to a 4.031 m

3
/s; satisfactory ANN model with higher EI value of 0.887 

against 0.072; and slightly smaller value of PFC of 0.355 against 0.593. Furthermore, 

from Figure 3, the simulated streamflow hydrograph obtained using the ANN model is 

matched by the observed streamflow hydrograph with the correlation coefficient value 

of 0.942 that is much higher than 0.396 of the HEC-HMS model for the test dataset. 

These performance measures clearly indicate that the ANN model performs better than 

the HEC-HMS model.  

 
Table 3: The RMSE performance results of the ANN network configuration sensitivity analysis 

for Mitchell station (unit: m
3
/s) 

 Number of hidden nodes 

Models 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

M1 7.19 7.23 7.30 7.14 7.24 7.23 7.15 7.15 7.08 7.13 7.06 7.07 7.03 6.90 7.04 6.91 

M2 6.41 6.37 6.38 6.40 6.31 6.27 6.18 6.15 6.19 6.10 6.06 6.14 6.09 6.06 6.07 6.04 

M3 6.23 6.20 6.14 6.17 6.13 6.16 6.15 6.23 6.15 6.19 6.18 6.10 6.09 6.12 6.11 6.15 

M4 6.23 6.16 6.14 6.11 6.10 6.14 6.11 6.13 6.14 6.16 6.14 6.18 6.10 6.10 6.08 6.13 

M5 4.28 4.24 4.04 4.28 3.88 3.91 4.22 4.05 3.93 4.03 3.93 4.04 3.77 3.93 3.83 3.92 

M6 4.18 4.06 4.08 4.00 4.07 4.05 4.00 3.93 3.90 4.05 4.00 4.02 4.01 4.37 3.93 3.92 

M7 4.36 4.31 4.26 4.32 4.23 4.31 4.18 4.34 4.25 4.15 4.17 4.19 4.24 4.26 4.28 4.16 

M8 4.23 4.13 4.22 4.32 4.10 4.27 4.24 4.18 4.13 4.20 4.01 4.17 4.30 3.98 4.09 4.03 

M9 4.35 4.14 4.01 4.09 4.10 4.13 4.09 4.21 4.03 4.32 4.17 4.13 4.07 4.08 4.09 4.22 

M10 4.15 4.14 4.02 4.14 4.05 4.17 4.12 4.18 4.03 4.15 4.18 4.17 4.17 4.17 4.18 4.18 

M11 3.91 3.77 3.81 3.93 3.80 3.70 3.87 3.77 3.95 3.76 3.87 3.75 3.53 3.93 3.82 4.01 

M12 4.11 3.74 3.89 4.05 4.01 3.82 3.72 3.51 3.81 3.73 3.69 3.76 3.72 3.65 3.67 3.72 

M13 4.16 4.27 3.98 3.97 4.22 4.19 4.12 3.93 4.06 3.83 3.90 4.09 4.00 4.08 3.99 4.13 

M14 4.28 4.13 4.05 3.97 4.10 4.02 3.92 3.86 3.93 4.17 4.04 3.99 3.78 4.08 3.94 3.97 

M15 3.94 3.95 4.09 4.07 3.85 4.19 3.91 4.00 3.77 3.93 3.73 3.82 3.84 3.96 3.88 3.90 

M16 4.03 3.79 3.65 3.91 3.83 3.80 3.79 3.72 3.85 3.90 3.75 3.80 3.71 3.77 3.77 3.82 

M17 4.13 3.91 3.98 3.88 3.88 3.87 3.89 3.90 3.80 3.69 3.67 3.60 3.89 3.72 3.82 3.92 

M18 3.68 3.77 3.63 3.79 3.65 3.70 3.66 3.75 3.74 3.97 3.70 3.77 3.93 3.82 4.25 3.79 

M19 4.00 3.72 3.79 3.75 3.89 3.75 3.85 4.02 3.88 3.83 3.99 3.99 3.78 3.98 3.93 3.95 

M20 3.98 4.12 4.07 4.04 4.05 3.84 4.06 3.95 4.18 4.00 4.03 4.06 4.16 3.92 4.03 4.03 

M21 4.06 3.83 4.08 4.15 3.90 4.04 4.09 3.95 4.11 4.16 4.03 4.41 4.22 4.30 4.17 4.18 

M22 4.06 4.02 3.64 3.86 4.08 3.88 3.83 3.89 3.92 4.12 3.94 4.01 3.96 4.19 4.18 4.12 
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Table 4: The performance prediction between the ANN model and the HEC-HMS model 

Dataset and 

period 

Mean flow 

(m
3
/s) 

Simulated 

model 

RMSE 

(m
3
/s) 

MAE 

(m
3
/s) 

EI PFC R 

Training 4.504 HMS 9.778  3.786 0.097 0.395 0.472 

(2002 to 2005)  ANN 3.405  1.594 0.890 0.217 0.945 

Test 4.975 HMS 11.927 4.504 -0.341 0.569 0.456 

(2000)  ANN 3.635 1.600 0.875 0.255 0.940 

Validation 5.294 HMS 10.657 4.031 0.072 0.593 0.396 

(2001)  ANN 3.727 1.513 0.887 0.355 0.942 

Where, HMS denotes the HEC-HMS model, and ANN represents the artificial neural network model. 

 

 
Figure 3: Improved streamflow hydrograph for validation dataset (starting January 2001) 

 

 

5.0 Conclusions 

 

This study presents an output updating procedure based on the ANN approach for 

gauged sites of river basins. The overall performance measures (such as RMSE, MAE, 

EI, PFC and R) of Bayesian regularization ANN model are superior to the HEC-HMS 

hydrologic model for Mitchell station. The ANN model shows the most accurate 

streamflow values with satisfactory model EI value higher than a 0.875, low values of 

RMSE and MAE ranging from 1.513 to 3.727 m
3
/s, more accurate prediction of peak 

flow with lower value of PFC = 0.217 and a value of R above 0.940. It has also been 

shown that the use of additional meteorological data in the network training can 

considerably improve the trained network with a lower RMSE value. Furthermore, the 
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results of analyses show that the implementation of LM algorithm and Bayesian 

regularization in the network training can provide a good approximation of input-output 

datasets. Therefore, the ANN model can successfully be applied to reduce discharge 

errors of gauged sites in a physically based model.  
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