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Abstract: Classical analyses of barrette foundation taking into account full interactions between 

barrette and the surrounding soil leads to a huge barrette stiffness matrix. Consequently, a large 

system of linear equations must be solved, especially for analyzing barrette group and barrette 

raft. To overcome this problem, a Composed Coefficient Technique (CCT) is developed for 

analyzing barrette. In the analysis, the elasticity of the barrette body is considered using the finite 

element method, while that of the soil elements is considered using flexibility coefficients. The 

compatibility between the vertical displacements of the barrette and the soil settlements at the 

soil-barrette interface is taken in the vertical direction only. This assumption is that the external 

load on the barrette head, which is expected to be heavy load, is applied in the vertical direction. 

For comparative examinations, the barrette elasticity is determined using either 1D or 3D finite 

elements. A series of examinations is carried out to verify the application for analyzing barrette 

by CCT. It was found that, treating the barrette as an elastic body and representing the 

barrette by either 1D or 3D finite elements, gives nearly the same results. 

 
Keywords: Soil structure interaction, deep foundation, barrette, settlement. 

 

 

 

1.0 Introduction 

 

Heavy loaded structures such as bridges and high raise buildings generate huge axial 

loads and need to be rested on large-section supports of deep foundations such as 

barrette foundations. Classical analyses of large-section support as barrette foundation 

taking into account full interactions between barrette and the surrounding soil leads to a 

huge barrette stiffness matrix. Consequently, a large system of linear equations must be 

solved, and thus these analyses are time consuming even for the fast computers of today, 

especially for analyzing barrette group and barrette raft. 

 

El Gendy, (2007), first proposed composed Coefficient Technique (CCT). He applied 

the technique on single pile, pile group and piled raft to reduce the size of the entire soil 

stiffness matrix. In this technique, the pile is treated as a rigid member having a uniform 
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settlement for all nodes along its shaft and base. CCT enables to assemble pile 

coefficients in composed coefficients. This technique was examined and applied 

efficiently for many studies, some of them are those of Hattab, (2007); Reda, (2009); 

Rabiei, (2009, 2010, 2016); Kamash, (2009, 2012); Kamash et al., (2014); Ibrahim et al., 

(2009); Mobarak, (2010); El-Labban, (2011); Moubarak, (2013); Chieruzzi et al., (2013); 

El Gendy et al., (2013, 2014). The Advantage of the CCT is that interaction of soil 

elements with the barrette elements are taken into consideration. The proposed analysis 

reduces considerably the number of equations that needs to be solved. Another point of 

view to choose CCT for the barrette analysis is that the designer is interested in the soil 

settlements and contact forces are at different levels on the barrette height not at each 

barrette node. Using the CCT enables to apply the nonlinear response of the barrette by 

a hyperbolic relation between the load and settlement of the barrette.  

 

Lately, this technique is also further developed by El Gendy et al., (2017) to be used for 

analyzing the barrette considering two cases of analyses. In the first one, the stiffness 

matrix of the soil is generated from flexibility coefficients with neglecting the elasticity 

of the barrette body. This relate to that the assumption of the analysis which considers 

the barrette moves as full rigid body. In the second case of analysis the entire stiffness 

matrix is determined from full three-dimensional Finite Element (3D FE). However, in 

this case, using CCT is considerably reduced the matrix, but it was still large and needs 

a time to be solved. Therefore, in this paper, the CCT was used for analyzing barrette. 

The elasticity of the barrette body was considered using the finite element method, while 

that of the soil elements was considered using flexibility coefficients. The compatibility 

between the vertical displacements of the barrette and the soil settlements at the soil-

barrette interface was taken in the vertical direction only. This assumption is that the 

external load on the barrette head, which is expected to be heavy load, was applied in 

the vertical direction. For comparative examinations, the barrette elasticity is determined 

using either 1D or 3D finite elements. A series of examinations was carried out to verify 

the application for analyzing barrette by CCT 

 

 

2.0 Mathematical Modeling 

 

2.1 Soil Stiffness Matrix in Non-composed Coefficients 

 

In non-composed coefficient method, barrette was assumed as the rectangular cross 

sectional shown in Figure 1. The surface of the barrette is divided into a number of shaft 

elements and base elements with ns nodes, each acted upon by a distributed stress. To 

carry out the analysis, the stresses acting on shaft and base elements are replaced by a 

series of concentrated forces acting on nodes. According to El Gendy et al., (2017) after 

generating flexibility coefficients, a stiffness matrix equation of the soil in non-

composed coefficients is given by: 
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    s ks = Q
     

(1) 

 

where {s} is ns settlement vector; {Q} is ns contact force vector; [ks] is ns × ns soil 

stiffness matrix. 

 
Figure 1: Barrette geometry, elements and stresses 

 

 

2.2 Barrette Stiffness Matrix Using 3D Finite Elements 

 

In this case, there is no approximation has to be carried out when determining the 

elasticity of the barrette itself due to its material, where the barrette is divided into 

Hexahedra solid elements. Figure 2 shows the mesh of the 3D finite elements of the 

barrette with loads. Each element consists of eight nodes; each node has three forces and 

three displacements in the three directions (i.e., six degree of freedom in one node). 

More details concerning this type of the solid element may be found in Chandrupatla/ 

Belegundu (2000). The unknowns of the problem are ns contact forces on soil-barrette 

interface and nt displacements (or settlements) on all nodes of the barrette in the three 

directions. 
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Figure 2: Mesh of the barrette with node numbering, loads and settlement 

 

 

2.3 Entire Stiffness Matrix in Non-composed Coefficients 

 

According to the principal of the finite element method, the stiffness matrix equation for 

the barrette can be defined as: 

 

      Q P = kp −δ   
    

(2) 

 

where {δ} is nt displacement vector of displacements wi, ui and vi in z-, x- and y-

directions; {P} is nh vector of applied forces on the barrette head; {Q} is ns vector of 

contact forces on the soil-barrette interface; [kp] is (nt×nt) barrette stiffness matrix; nh is 

number of nodes on the barrette head; ns is number of nodes on the soil-barrette 

interface; nt is total number of barrette nodes, nt= nh+ns Substituting Eq. (1) into Eq (2), 

leads to: 

 

       s ks P = kp −δ
    

(3) 

 

The soil stiffness matrix [ks] is a full matrix, while the original size of the barrette 

stiffness matrix [kp] is a banded matrix. Therefore, the matrix [kp] is extended to be a 

full matrix of size nt * nt to enable the summation process of the barrette stiffness matrix 

with soil stiffness matrix to be carried out. 

 

Assuming full compatibility between barrette displacements wi and soil settlement si, the 

following equation can be obtained: 

 

       P = kskp δ+   
  

(4) 

or 
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    P = kt δ                
            

(5) 

 

where [kt] is entire stiffness matrix of the barrette and the soil in non-composed 

coefficients. 

 

Solving the above system of linear equations 5, gives the vertical displacements at each 

node wi, which equal to the soil settlement si at that node. Substituting soil settlements 

from Eq. (5) into Eq. (1), gives contact forces Qi on the barrette in case of considering 

the barrette as elastic body. 

 

2.4  Soil Stiffness Matrix in Composed Coefficients  

 

To reduce the size of the entire stiffness matrix, the CCT is used to perform a soil 

stiffness matrix for barrette as a line member from the original soil stiffness matrix of 

Eq. (1). Another point of view to choice this idea is that the designer is interested in the 

soil settlements and contact forces at different levels on the barrette height not at each 

barrette node. To describe the formulation of CCT for generating the soil stiffness 

matrix of the barrette in this case, consider, as an example, the simple barrette shown in 

Figure 3a, which has a total of n = 33 surface nodes. The barrette of 3D is converted to 

1D as indicated in Figure 3b. which has nb = 4 nodes in 4 levels. Each node has a force 

and a settlement in the vertical direction. The unknowns of the problem will be reduced 

to nb contact forces Qbi on soil-barrette interface and nb settlements (or displacements) sbi 

on all nodes of the barrette in the vertical direction. 

 

 

 
Figure 3: Surface mesh of the barrette with node numbering, loads and settlement 

 

 

The soil stiffness matrix of Eq. (1) for the barrette shown in Figure 3a, which takes into 

account the interaction effect among all soil-barrette interface nodes, can be expanding 

in the following matrix equation: 
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where ki, j is stiffness coefficient of the soil stiffness matrix, [kN/ m]. In Eq. (6), carrying 

out the summation of rows and columns corresponding to the barrette node i in 1D, 

leads to: 
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Accordingly, Eq. (7) of soil stiffness matrix can be rewritten for the barrette of 1D in 

composed coefficients as: 
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where Ki, j is composed coefficient, [kN/m]; sbi is settlement in node i of 1D barrette, [m], 

sb1= s1= s2= ...= s8, sb2= s9= s10= ...= s16, ......, sb4= s25= s26= ...= s33; Qbi is contact force on 

node i of 1D barrette [kN], Qb1= Q1+ Q2+ ... + Q8, Qb2= Q9+ Q10+ ... + Q16, ......, Qb4= Q25+ ... + 

Q33. Eq. (8) show that the soil stiffness matrix in Eq. (6) of size 33×33 is reduced 

considerably to an equivalent soil stiffness matrix of size 4×4. It could be written in a 

compacted matrix form in composed coefficients as: 

 

    bb s kb = Q
     

(9) 

 

2.5 Barrette Stiffness Matrix Using 1D Finite Elements 

 

To generate a barrette stiffness matrix compatible with the above composed soil 

stiffness matrix, the barrette is represented by a vertical line member having a variable 

settlement (or vertical displacement) along its height.  
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Using 1D finite element method in the analysis of barrette, only the axial compression 

of the barrette is considered in determining displacements of barrette elements. The 

beam stiffness matrix of the barrette element i can be expressed as (Figure 4): 

 

    
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11
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(10) 

 

where Ep is Modulus of Elasticity of the barrette material, [kN/m2]; Api is cross-section 

area of the barrette element i, [m2]; li is length of the barrette element i, [m]. 

 

 

 
Figure 4: Finite element mesh of barrette and element geometry 

 

 

2.6 Entire Stiffness Matrix in non-composed Coefficients 

 

According to the principal of the finite element method, the assembled axial stiffness 

matrix equation for the barrette can be written as: 

 

      bQ P = kp −δ   
  

(11) 

 

where {δ} is (ns+1) displacement vector; {P} is (ns+1) vector of applied load on the 

barrette, {P} = {Ph, o, o, o,…, o}T; [kp] is (ns +1)×(ns +1) beam stiffness matrix. 

Substituting Eq. (9) into Eq (11), leads to: 

 

       bs kb  P = kp −δ    
      

(12) 

 

Assuming full compatibility between barrette displacement δi and soil settlement sbi, the 

following equation can be obtained: 

 

       P = kbkp δ+
    

(13) 

a) Barrette model in 1D-FE 
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or 

    P = ktb δ                
              

(14) 

 

where [ktb] is entire stiffness matrix of the barrette and the soil in composed coefficients. 

 

Solving the above system of linear equations 14, gives the displacement Sbi at each 

barrette level, which equal to the soil settlement at that node. Substituting soil 

settlements from Eq. (14) into Eq. (9), gives contact forces Qbi on the barrette. To get the 

contact forces Qi on all barrette nodes on the 3D model in Figure 3a, substituting soil 

settlements from Eq. (14) into Eq. (6). 

 

 

3.0 Numerical Results 

 

The proposed method for analyzing barrette using CCT outlined in this paper was 

implemented in the program ELPLA. With the help of this program, an analysis of two 

verification examples is carried out first to judge the proposed method for nonlinear 

analyses. Then, a comparative examination of modeling for analyzing single elastic and 

rigid barrette is carried out. 

 

3.1 Validity of linear Analysis of Single Barrette 

 

An analytical analysis of a single barrette having a rectangular cross section embedded 

in a multi-layered soil medium is available in the reference Basu et al., (2008). In the 

analytical analysis, the differential equations governing the displacements of the 

barrette-soil system were obtained using variation principles. Closed-form solutions for 

barrette deflection and axial force along the barrette shaft were then produced by using 

the method of initial parameters. 

 

The barrette is considered and analyzed for four different cases under different loads, 

geometries and subsoil conditions. The load on the barrette head and barrette geometry 

for the chosen cases are listed in Table 1. The subsoil of each case consist of four layers, 

each layer has a different Modulus of Elasticity, Es and Poisson's ratio, νs as listed in 

Table 3. The barrette material properties are listed in Table 2.  
 

Table 1: Loads and barrette geometries. 

Case  Load [kN] Height [m] Cross section  

1 3000 15 0.5 [m] × 0.5 [m] 

2 2500 10 0.7 [m] × 0.7 [m] 

3 10000 40 2.8 [m] × 0.8 [m] 

4 8000 30 2.7 [m] × 1.2 [m] 
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Table 2: Barrette material properties. 

Modulus of Elasticity of the barrette material  Ec = 2.5×107 [kN/m2] 

Poisson's ratio of the barrette material              νc = 0.20       [-] 
 

Table 3: Subsoil properties. 

Case 
Layer 

No. 
z [m] Es [kN/m2] νs [-] 

1 

1 2 10000 0.40 

2 5 15000 0.35 

3 10 30000 0.30 

4 ∞ 100000 0.15 

2 

1 1 10000 0.40 

2 5 15000 0.35 

3 8 30000 0.30 

4 ∞ 80000 0.20 

3 

1 5 20000 0.35 

2 15 25000 0.30 

3 35 30000 0.30 

4 ∞ 80000 0.20 

4 

1 2 15000 0.40 

2 12 25000 0.30 

3 22 30000 0.30 

4 ∞ 100000 0.15 

 

 

A comparison of results of the single barrette in a multi-layered soil medium of the 

present analysis using flexibility coefficient with those of Basu et al., (2008) is 

presented herein. The height of the barrette is divided into equal elements, and the 

height of each element is h = 1 [m] in all cases. Both the barrette length and width are 

divided into four equal elements in each case. In the analysis, barrette material is 

considered to be elastic and the barrette is analyzed as 1D finite elements. 

 

The barrette settlement, s along the barrette height obtained from the present analysis 

using flexibility coefficient for the four cases of analysis are compared with those of 

Basu et al., (2008) in Figure 5 to Figure 8. 

 

From these results, it can be concluded that the absolute difference between the 

maximum settlements is ranging between 0.8 % for the first case and 2.0 % for the 

second case, while the other cases it is only 1.0 %. Also, the absolute differences 

between the minimum settlements are 7.0 %, 4.0 %, 15.0 % and 5.0 % respectively. 

 

These results show also that verification results of the present analysis using flexibility 

coefficient are in good agreement with those of Basu et al., (2008). Results of the 
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barrette head settlements are similar to those of Basu et al., (2008). However, regarding 

results of the base settlements, the difference reached 15.0 % in case of a barrette having 

a great aspect ratio in the cross section, case (3). The difference in this case is very small 

when compared to the barrette dimensions, which equals to 0.06 cm. 

 

 

 
Figure 5: Settlement along the barrette 

height (case 1). 

 
Figure 6: Settlement along the barrette 

height (case 2). 

 

 
Figure 7: Settlement along the barrette 

height (case 3). 

 
Figure 8: Settlement along the barrette 

height (case 4). 

 

 

3.2 Case Studies of a Single Barrette 

 

This section presents the main features of the numerical models used in analyzing the 

behavior of single barrette in a real subsoil. The subsoil of East Port Said area is 

considered as the proposed real subsoil in these case studies. The reason is that the 

existing heavy loaded structures in East Port Said suffered from settlement problems due 

to the presence of extended soft clay layers. The typical subsoil layers of East Port Said 

area, as presented by Hamza et al., (2000). in Table 7, is considered in the analysis. The 

different case studies under investigation are also described. Every case is examined in a 
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parametric study. The study covered different barrette lengths L with different barrette 

heights H for a constant barrette width W of 1.0 m. The effect of these variables on the 

barrette loads at certain settlement is also investigated. Furthermore, the analysis is 

carried out considering various calculation methods. The main features of the most 

effective numerical methods suitable for the single barrette analysis in East Port Said 

clay are also discussed. The main variables of the parametric study are described in the 

next paragraphs.      

 

Twelve case studies of single barrettes are considered as given in Table 4.  

 

 
Table 4: Studied cases of a single barrette. 

Length/Height L = 1.5  L = 2.0  L = 2.5  L = 3.0  

H = 24  Case 1 Case 2 Case 3 Case 4 

H = 30  Case 5 Case 6 Case 7 Case 8 

H = 36  Case 9 Case 10 Case 11 Case 12 

 

 

The subsoil of each case assumed to be the typical soil properties of East Port-Said area 

as given in Table 6, each layer has a different Modulus of Elasticity Es and Poisson's 

ratio νs. The barrette material properties are listed in Table 5.  

 

 
Table 5: Barrette material properties. 

Modulus of Elasticity of the barrette material   Ec = 2.5×107  [kN/m2] 

Poisson's ratio of the barrette material               νc = 0.20 [-] 

 
Table 6: Subsoil properties, Hamza et al. [9]. 

Layer No. z [m] Es [kN/m2] νs [-] 

1 5 2400 0.2 

2 13.5 30000 0.25 

3 28.5 8120 0.2 

4 38.5 9940 0.2 

5 48.5 11340 0.2 

6 58.5 12810 0.2 

7 92.5 60000 0.2 

8 120 144000 0.2 

 

 

In this paper, comparative tests of numerical models for analyzing single barrette in East 

Port Said deep clay layers are performed. For the purpose of comparative investigations, 

two different models of single barrette are considered in a total of 48-case studies. The 

analysis is carried out by the following methods: 
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1. Elastic barrette in a continuum soil medium. 

2. Rigid barrette in a continuum soil medium. 

 

The load-settlement relation is determined according to: 

 

a) Nonlinear analysis of a single barrette using hyperbolic function. 

b) Linear analysis of a single barrette. 

 

The availability of the above mentioned analysis methods and load-settlement models 

provides the researcher with a wide variety of numerical models that can handle the 

problem of single barrette as indicated in Table 4. In this analysis, many case studies of 

single barrette are analyzed using different numerical models in order to explore the 

effect of the type of calculation method on the results.  

 
Figure 9: Surface element of the single 

barrette. 

 

 
Figure 10: Barrette representing by 3D finite 

elements. 

 
Figure 11: Barrette representing by 1D finite 

elements. 

 
Figure 12: Barrette representing as rigid 

elements. 
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Twelve case studies are presented with variables including; the height, length and width 

of the barrette which are divided into equal elements, and the height of each element is h 

= 1.0 m, in all cases. Both the barrette length and width were divided into equal 

elements, the length and the width of each element is l = w = 0.5 m, in all cases as 

shown in Figure 9 to Figure 12. 

 

3.2.1 Limit Barrette Load  

 

A limit barrette load Ql kN has been used as parameter geometry for the hyperbolic 

curve of nonlinear response of load settlement relation. Russo (1998) suggested limit 

shaft friction not less than ql = 180 kN/m2 meeting undrained shear strength of 200 

kN/m2. To carry out the present analysis a limit shaft friction of ql = 180 kN/m2 has 

been assumed, the limit barrette load considered in the analysis for barrette dimensions 

which are presented in Table 7. 

 

 
Table 7:  Limit barrette load Ql [kN] for different barrette geometries. 

Length/Height L = 1.5  L = 2.0  L = 2.5  L = 3.0  

H = 24 21600 25920 30240 34560 

H = 30 27000 32400 37800 43200 

H = 36 32400 38880 45360 51840 

 

 

3.2.2 Guideline of Barrette Stiffness  

 

One of the difficulties that arise when analyzing a three dimensional problem, such as 

barrette in a continuum soil medium, is the huge number of 3D finite elements required 

for the analysis. Consequently, a long computational time is needed. Before performing 

the analysis routine, an examination for the used element type and barrette rigidity is 

carried out. This examination depends on that barrette itself as a great block of concrete 

which may be considered as rigid enough in the long direction. This property advantage 

maybe used to simplify the problem and to accelerate the analysis. 

 

3.2.2.1 Barrette Elasticity 

 

To analyze the barrette as an elastic material, two different methods are used in this 

paper. The first depends on 3D finite elements representing the barrette by its natural 

geometry, Figure 10. The second method using 1D finite elements in the z-direction 

representing the barrette as line elements in the direction of its height, Figure 11. The 

twelve cases listed before are analyzed using the two different types of elements, and the 

results of reactions, settlements and elapsed time are compared, as shown in Figure 13 to 

Figure 16. 
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Figure 13: Base reaction using 1D and 3D 

finite elements. 

 

 
Figure 14: Shaft reaction using 1D and 3D 

finite elements. 

 
Figure 15: Max. and Min. settlement when 

using 1D and 3D finite elements. 

 

Figure 10: Shaft reaction using 1D and 3D 

finite elements. 

 

 
Figure 16: Elapsed time [sec] when using 1D 

and 3D finite elements. 

 

From Figure 13 to Figure 16 it can be concluded that: 

 

•        The elapsed time to analyze the single barrette will be decreased by about 85 % 

when using 1D finite elements. 

•        The difference in the settlement when using 1D and 3D finite elements are less 

than 0.25 %. 

 

3.2.2.2 Barrette Rigidity 

 

Settlement along the barrette height is considered the main important value in all 

barrette results. Therefore, in this section an examination is carried out for considering 

the barrette as one unit having a uniform settlement along its height or as an elastic body 

having a non-uniform settlement along its height. In the first assumption the barrette is 

treated as a full rigid body which obeys the rigid body movement, while in the second 

the barrette is treated as an elastic body considering the elastic property of its material. 
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The twelve cases listed before for single barrette are analyzed as a full rigid barrette in a 

continuum soil medium, Figure 12, and as an elastic barrette in a continuum soil 

medium, Figure 11. Results of the settlements are compared using both linear and 

nonlinear analyses, as shown in Figure 17 and Figure 18.    

 

From Figure 17 and Figure 18, it can be concluded that: 

 

•        The absolute difference between the maximum settlement considering a rigid 

barrette and an elastic barrette for both linear and nonlinear analyses is about 

9.74 %. It occurred in case (9), and is less than 8 % in all the remaining other 

cases. 

•        The absolute difference between the minimum settlement considering a rigid 

barrette and an elastic barrette for both linear and nonlinear analyses is about 

4.78 %. It is occurred in case (9), and is less than 4 % in the other cases. 

•        The maximum difference occurs in barrettes having a long height in the soil. 

•        Barrettes of small cross sections gave higher settlement difference.  

•        In spite of the relatively large differences between the maximum settlements 

which ranged between 9.74 % and 4.78 %, their actual values are very small, 

0.204 cm and 0.1 cm, respectively. 

 

 

 
Figure 17: Maximum, minimum and rigid 

settlement using linear analysis 

 
Figure 18: Maximum, minimum and rigid 

settlement using nonlinear analysis 

 

 

4.0 Conclusions 

 

An application of CCT on barrettes as large-section supports is presented. The proposed 

technique considers the 3D full interactions between barrette and soil. From application 

of CCT technique on real soil, it can be concluded that: 
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•        Both flexibility coefficient and 3D finite element models can be used safely in the 

linear analysis of single barrette in cases of half space soil and soil consists of 

different layers extended from weak to hard layers and the results are identical.  

•        For soils that consist of different layers extended from hard layer to weak one, the 

maximum difference in the settlement between both models is high and reach 

twice. It is found that settlements from 3D finite element model are less than 

those of flexibility coefficient model. This is related to, in 3D finite element mode, 

the first harder layer is to act as a support for the next weaker soil layer, where the 

soil is treated as continuum structure connected together and maybe resist soil 

tension. In this case interface elements between the two layers maybe inserted to 

enhance the results.   

•        Flexibility coefficient model can be used safely to model all cases of soil 

conditions. 

•        Due to the less number of nodes in flexibility coefficient model rather than 3D 

finite element model, the first model consumes less computation time in the 

analysis. 

•        Treating the barrette as an elastic body and representing the barrette by either 1D 

or 3D finite elements, gives nearly the same results. This conclusion is used in 

this paper, when analyzing the barrette as an elastic body. 

•        For these cases, treating the barrette as a rigid body due to its high rigidity in the 

direction of its height, gives nearly the same results as treating it as an elastic 

body.  
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