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Abstract: In this work the Bubnov-Galerkin variational method was applied to determine the 

critical buckling load for the elastic buckling of columns with fixed-pinned ends. Coordinate 

shape functions for Euler column with fixed-pinned ends are used in the Bubnov-Galerkin 

variational integral equation to obtain the unknown parameters. One parameter and two 

parameter shape functions were used. In each case, the Bubnov-Galerkin method reduced the 

boundary value problem to an algebraic eigen-value problem. The solution of the characteristic 

homogeneous equations yielded the buckling loads. One parameter coordinate shape function 

yielded relative error of 4% compared with the exact solution. Two parameter coordinate shape 

function gave a relative error of 0.77%, which is negligible.  
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1.0 Introduction 

 
1.1  Background/Literature Review 

 

Columns are long slender bars under axial compressive forces. They can be horizontal, 

vertical or inclined. They are classified as short columns, long columns or intermediate 

columns. When a slender member is subjected to an axial compressive force, it may fail 

due to buckling (Rao, 2016; homepages, 2016; Lagace, 2009). Buckling is a geometric 

instability in which the lateral displacement of the axially compressed column can 

suddenly become very large (Rao, 2016; Lagace, 2009; Punmia et al., 2002; Jayaram, 

2007). Short columns fail by crushing or compressive yielding of the material. Long 

columns fail by buckling or flexural buckling which is a geometric failure or instability.  

Intermediate columns fail by a combination of crushing and flexural buckling failures. 
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Intermediate columns fail by both compressive yielding and flexural buckling of the 

column. 

 

Thin structures subject to compression loads that have not achieved the material strength 

limits can fail by buckling. (Beeman, 2014). Buckling is characterized by a sudden 

failure of a structural member subjected to high compressive stress where the actual 

compressive stress at the imminence of failure is less than the ultimate material 

compressive strength (Beeman, 2014; Novoselac et al., 2012). 

 

The critical buckling load for an axially compressed column, determined using a linear 

elastic buckling analysis of an idealized perfect structure does not necessarily 

correspond to the load at which instability of the real structure takes place (Fernandez, 

2013). The calculated critical buckling load does not provide sufficient information 

about when failure due to the instability of the structure as a whole will occur. This 

depends on other factors like initial geometrical imperfections, eccentricities of loading, 

and the nonlinear deflection behaviour of the structure (Yao and Lee, 2011). 

 

Buckling can be analyzed using linear buckling analysis (eigenvalue) or non linear 

buckling analysis (Eryilmaz et al., 2013). The objective of linear buckling analysis is to 

determine the buckling load factor and the critical buckling load (Digital Engineering, 

2017). Critical buckling loads in linear (eigenvalue) buckling analysis may be 

determined using any of the following methods: 

 

i. by exact mathematical methods of solving the governing differential equations 

of equilibrium subject to the boundary conditions. This yields exact values of 

the critical buckling loads. 

ii. by using approximate methods, which may be based on energy principles, 

variational methods or discrete approximations of the governing differential 

equations of equilibrium and the boundary conditions. 

 

Mathematically rigourous techniques of solving the boundary value problem of column 

buckling which consists of solving the governing differential equation of equilibrium on 

the problem domain subject to the prescribed boundary conditions presents considerable 

difficulties and can only be achieved for simple buckling problems for structures with 

low degrees of freedom. Such problems which are difficult to solve in closed analytical 

form are usually solved using the approximate methods based on discretization of the 

governing equations, variational methods and energy principles. Approximate methods 

have been used to solve the column buckling problem by Zdravkovic et al., 2013; Li et 

al., 2011; Huang and Li, 2011; Kalakowski et al., 2016; Reddy, 2014; Yuan and Wang, 

2011; Atay, 2009; and Okay et al., 2010). 

 

Basebuk et al., (2014) used the Hemotopy Analysis Method (HAM) to find the critical 

buckling load of a column under end load dependent on direction. Eryilmaz et al. (2013) 
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implemented the HAM to determine the buckling loads of Euler columns with a 

continuous elastic restraint. Atay (2009) determined the critical buckling loads for 

variable stiffness Euler columns using homotopy perturbation method. Okay et al. 

(2010) used the variational iteration method (VIM) to determine buckling loads and 

buckling modal shapes of columns. Yuan and Wang (2011) used the differential 

quadrature method (DQM) to carryout buckling and post buckling analysis of beam-

columns. Reddy (2014) implemented buckling analysis of cracked stepped column using 

the Finite Element Method (FEM). Zdravkovic et al. (2013) used the energy method for 

the efficient estimation of the elastic buckling load of axially compressed three-segment 

stepped column. 

 

In this paper the Bubnov-Galerkin method is used to determine the critical buckling load 

of prismatic Euler column of length, l with fixed-pinned ends at x = 0, and x = l 

respectively, where x is the longitudinal coordinate axis of the column. 

 

1.2  Euler Theory of Buckling 

 

Euler considered an elastic column of length l that is pinned at the ends x = 0 and x = l 

and subjected to an axial compressive force P. The column undergoes a lateral 

deflection denoted by v(x). Moment equilibrium of a section of the deflected column cut 

at an arbitrary point, x, from the end, x = 0, and the application of the moment – 

curvature equation results in (homepages, 2016; Lagace, 2009; Megson, 2005; Lowe, 

1971): 

 

2

2

( )
( ) ( )

d v x
Pv x M x EI

dx
− = =       (1) 

Or,    

 

 

2

2
0( )

d v P
v x

EIdx
+ =        (2) 

 

where E is the Young’s modulus of elasticity, I is the moment of inertia and M(x) is the 

bending moment variation along the longitudinal axis of the column, and x denotes the 

longitudinal axis coordinate of the column. 

 

1.3 General Equation for column buckling 

 

The second order differential Equation (2) applies to columns with simply supported 

ends x=0 and x = l. The more general column buckling equation uses the formulation 

similar to the bending of a beam, but including the axial forces (Lowe, 1971; 

homepages, 2016). The forces and moments acting on an elemental part of a column 

under axial compressive forces are shown in Figure 1. 
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Figure 1: Forces and moments acting on an elemental column 

 

 

For vertical equilibrium, 

 

 ( )
dQ

q x
dx

=         (3) 

 

where Q(x) is the shear force. 

 

For horizontal equilibrium 

( ) ( ) ( )
dP

P x P x x P x dx
dx

= + = +      (4) 

 

 P(x) is constant 

 

For moment equilibrium, 

 

 
dM dv

P Q
dx dx

+ =        (5) 

The equation for moment equilibrium contains an extra term  
dv

P
dx

  which is absent in 

the equation for Euler Bernoulli beam flexure theory. 

 

By differentiation of Equation (5), with respect to x, we obtain: 

 

 ( )
d dM dv dQ

P q x
dx dx dx dx

 
+ = = 

 
     (6) 
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Simplifying, 

 

 

2 2

2 2
( )

d M d v
P q x

dx dx
+ =        (7) 

 

Application of the moment curvature relation in Equation (7) yields: 

 

 

2 2 2

2 2 2
( )

d d v d v
EI P q x

dx dx dx

 
+ = 

 
     (8) 

 

For the prismatic columns, EI is constant and the Equation (8) simplifies to (Megson, 

2005): 

 

 

4 2

4 2
( )

d v d v
EI P q x

dx dx
+ =       (9) 

 

1.4  Assumptions of the Euler’s Theory of column buckling 

 

Euler’s theory of column buckling is based on the following assumptions (Punmia et al., 

2001; Jayaram, 2007; Megson, 2005; Lowe, 1971): 

 

(i) The column is straight in the longitudinal direction before the application of 

load. 

(ii) The column has a uniform cross section throughout its longitudinal axis. 

(iii) The column material is isotropic and homogeneous. 

(iv) The self-weight of the column material is disregarded. 

(v) The line of application of axial compressive load is coincident with the 

longitudinal axis of the column. 

(vi) The reduction in length of the column due to axial compression is very 

small and disregarded. 

(vii) The column fails due to buckling alone. 

 

1.5  Research Aim and Objective 

 

The research aim and objective is to use the Bubnov-Galerkin variational method to 

determine the elastic buckling loads of Euler columns with fixed pinned ends at x=0, 

and x=l; respectively. 

 

 

 

 



336 Malaysian Journal of Civil Engineering 30(2):331-346 (2018) 

 
2.0  Theoretical Framework and Methodology 

 

The governing differential equation for the elastic buckling of prismatic Euler columns 

under axial compressive load P when transverse loads are absent is given by the fourth 

order ordinary differential equation (ODE) with constant coefficients given by: 

 

  0ivEIv Pv+ =       (10) 

 

where v(x) is the deflection, E is the Young’s Modulus of the column material. I is the 

moment of inertia. 

 

The fourth order ordinary differential Equation (10) is solved subject to the boundary 

conditions of the column. The mathematical problem of the column buckling is an 

eigenvalue problem (Lowe, 1971). 

 

In the Bubnov-Galerkin method, the deflection function v(x) is chosen in terms of shape 

functions that automatically satisfy the boundary conditions and undetermined 

parameters called generalized displacement parameters that are sought such that the 

Bubnov-Galerkin variational integral would vanish. This implies that the weighted error 

or weighted residual where the shape functions serve as the weighting functions would 

vanish over the entire column. For one parameter displacement field 

 

  1 1( ) ( )v x c N x=       (11) 

 

where c1 is the unknown displacement parameter N1(x) is the displacement shape 

function that satisfies the boundary conditions. The Bubnov-Galerkin integral for a one 

parameter displacement field is given by: 

 

  1
0

0( ) ( )
l

ivEIv Pv N x dx+ =      (12) 

 

  ( ) 1
0

0( )
l

iv P
v v N x dx

EI
+ =      (13) 

 

  ( )1 1 1 1 1 1
0

0
l

iv P
c N N c N N dx

EI
+ =     (14) 

 

  ( )1 1 1 1 1
0

0
l

iv P
c N N N N dx

EI
+ =     (15) 
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   1 1 1 1 1
0 0

0
l l

iv P
c N N dx N N dx

EI
 =+     (16) 

 

  ( )1 11 11 0
g

c k k+  =       (17) 

 

where,    

 

11 1 1
0

l
ivk N N dx=        (18) 

 

  11 1 1
0g

l
k N N dx=        (19) 

 

and    

 

P

EI
 =        (20) 

 

 is the buckling load factor. 

 

For non-trivial solutions, 1 0c   and the characteristic buckling equation becomes the 

algebraic eigen-value eigen vector problem 

 

  11 11 0
g

k k+  =       (21) 

 

Expanding, and solving, 

  11

11g

k

k

−
 =        (22) 

 

The critical buckling load can then be determined. 

 

For a two parameter displacement field,  

 

  v(x) = c1N1(x) + c2N2(x)      (23) 

 

where c1, c2 are the two unknown parameter and N1(x), N2(x) are the displacement shape 

functions which are chosen to satisfy the boundary conditions. The Bubnov-Galerkin 

variational integral is: 
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 1 1 2 2 1 1 2 2 1
0

0( ) ( )
l

iv iv P
c N c N c N c N N dx

EI

  + + + =
      (24) 

  

 1 1 2 2 1 1 2 2 2
0

0( ) ( )
l

iv iv P
c N c N c N c N N dx

EI

  + + + =
      (25) 

 

 ( )1 1 1 1 2 2 2 1
0 0

0( )
l l

iv ivP P
c N N N dx c N N N dx

EI EI
 + + + =    (26) 

 

 ( ) ( )1 1 1 2 2 2 2 2
0 0

0
l l

iv ivP P
c N N N dx c N N N dx

EI EI
 + + + =    (27) 

 

Expanding, 

 

( ) ( )1 1 1 1 1 2 2 1 2 1
0 0 0 0

0
l l l l

iv ivP P
c N N dx N N dx c N N dx N N dx

EI EI
 + + + =     (28) 

 

( ) ( )1 1 2 1 2 2 2 2 2 2
0 0 0 0

0
l l l l

iv ivP P
c N N dx N N dx c N N dx N N dx

EI EI
 + + + =    (29) 

 

Let   12 2 1
0

l
ivk N N dx=        (30) 

  12 2 1
0g

l
k N N dx=        (31) 

  21 2 2
0

l
ivk N N dx=        (32) 

  21 1 2
0g

l
k N N dx=        (33) 

  22 2 2
0

l
ivk N N dx=        (34) 

  22 2 2
0g

l
k N N dx=        (35) 

Then, we have: 

 

  1 11 11 2 12 12 0( ) ( )
g g

c k k c k k+  + +  =     (36) 

 

  1 21 21 2 22 22 0( ) ( )
g g

c k k c k k+  + +  =     (37) 
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11 11 12 12 1

221 21 22 22

0

0

g g

g g

k k k k c

ck k k k

+  +     
  =    +  +     

   (38) 

 

For non-trivial solutions,  

 

 
1

2

0

0

c

c

   
   
  

 

 

The buckling equation becomes: 

 

 
11 11 12 12

21 21 22 22

0
g g

g g

k k k k

k k k k

+  + 
=

+  + 
     (39) 

 

Expanding, 

 

 11 11 22 22 12 12 21 21 0( )( ) ( )( )
g g g g

k k k k k k k k+  +  − +  +  =   (40) 

 

This yields a quadratic equation in terms of , from which the two roots of  yield two 

values of buckling loads. 

 

 

3.0  Application to the Buckling of fixed - Hinged or Clamped – Pinned 

Columns 

 

3.1 Problem considered 

 

The elastic buckling of Euler column with fixed-pinned ends at x=0 and x=l was 

considered as shown in Figure 2. The governing differential equation is given by 

Equation (10). 
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Figure 2: Elastic buckling of Euler column with fixed-pinned ends 

 

 

The boundary conditions are: 

 

  v(x = 0) = θ(x =0) = v(x = 0) = 0( ) ( )v x l v x l= = = =   (41) 

 

A suitable displacement coordinate shape function that satisfies the boundary conditions 

at x=0, and x = l is: 

 

 ( ) ( ) ( )
4 3 2

1 2 5 1 5( ) . .
x x x

v x c
l l l

 
= − + 

 
      (42) 

 

for a one parameter choice of v(x) where N1(x) is the displacement shape function, c1 is 

the generalized displacement parameter: 

 

 ( ) ( ) ( )
4 3 2

1 2 5 1 5( ) . .
x x x

N x
l l l

= − +      (43) 

 

For a two parameter choice of v(x) Equation (23) is used where N1(x) is given by 

Equation (43) and  

 

 ( ) ( ) ( )
5 4 3

2

7 4

3 3

x x x
N

l l l
= − +       (44) 

 

c1 and c2 are the two unknown generalized displacement parameters. 
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3.2 One term (Parameter) Bubnov-Galerkin Solution 

 

The Bubnov-Galerkin variational integral is given by Equation (15). By differentiation, 

 

  

2

1 4 3 2

12 15 3x x
N

l l l
 = − +      (45) 

 

  1 4

24ivN
l

=        (46) 

 

Therefore, the Bubnov-Galerkin variational integral becomes: 

 

( ) ( ) ( )
4 3 22

1 14 4 3 20

24 12 15 3
2 5 1 5 0* . .

l x x xx x
dxEIc Pc

l l ll l l l

   
− + = + − +      

 (47) 

  

Integrating and simplifying, 

 

    1 3

1 8 0 085714286
0

. . P
c

l EIl
=−    (48) 

 

The differential equation simplifies to an algebraic eigen-value eigen-vector problem 

given by Equation (48). 

 

For non-trivial solution, c1  0 

 

Then the characteristic buckling equation becomes the homogeneous equation 

 

  
3

1 8 0 085714286
0

. .P

EI ll
− =      (49) 

 

Solving 

 

  
2

21cr

EI
P

l
=        (50) 

 

3.3 Two term (parameter) Bubnov-Galerkin Solution 

 

For the displacement (shape) coordinate functions considered Equations (45) and (44), 

differentiation yields: 
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3 2

2 5 4 3

20 28 8x x x
N

l l l
 = − +      (51) 

 

  2 5 4

120 56iv x
N

l l
= −       (52) 

 

While 1N   and 1
ivN  are given by Equations (45) and (46) respectively 

 

By integration, 

 

 1 1
0

0 085714286.l
N N dx

l

−
 =      (53) 

 

 1 1 30

1 8.l
ivN N dx

l
=        (54) 

 

 2 2
0

0 025396824.l
N N dx

l

−
 =      (55) 

 

 2 2 30

0 609523734.l
ivN N dx

l
=      (56) 

 

 2 1 30

0 8.l
ivN N dx

l
=        (57) 

 

 2 1
0

0 042571429.l
N N dx

l

−
 =      (58) 

 

 1 2
0

0 042857142.l
N N dx

l

−
 =      (59) 

 

 1 2 30

0 8.l
ivN N dx

l
=        (60) 

 

The Galerkin variational integrals then reduce to the system of algebraic equations in 

terms of the unknown generalized parameters, c1 c2 as follows: 
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1 23 3

1 8 0 085714286 0 8 0 0428571429
0

. . . .P P
c c

EI l EI ll l

   
− + − =   

   
  (61) 

 

1 23 3

0 8 0 042857142 0 609523734 0 025396824
0

. . . .P P
c c

l EI l EIl l

   
− + − =   

   
 (62) 

  

In matrix form, 

 

1

2

1 80 0 80 0 085714 0 042857 0

0 80 0 609524 0 042857 0 0253968 0

. . . .

. . . .

c

c

      
−  =       

      
  (63) 

 

where 

2Pl

EI
 =          (64) 

 

1

2

1 80 0 085714 0 80 0 042857 0

0 80 0 042857 0 609524 0 0253968 0

( . . ) ( . . )

( . . ) ( . . )

c

c

−  −       
=     

−  −      
  (65) 

 

For non-trivial columns 

 

 
1

2

0
c

c

 
 

 
 

 

The characteristic buckling equation then becomes: 

 

 
1 80 0 085714 0 80 0 042857

0
0 80 0 042857 0 609524 0 0253968

. . . .

. . . .

−  −   
=  

−  −   
  (66) 

 

By expansion, we obtain after simplification, 

 

 
2 87 13621 1358 92 0. . −  + =      (67)

  

Solving, 

  

2

20 34614.
Pl

EI
 = =        (68) 
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then, 

  
2

20 34614.cr

EI
P

l
=       (69) 

 

The exact solution for Pcr is 

 

  
2

20 1907.cr

EI
P

l
=       (70) 

 

 

4.0 Discussion 

 

The Bubnov-Galerkin variational method has been successfully applied in this work to 

determine the critical buckling load of Euler columns under axial compressive load P 

when the ends are fixed at x = 0 and pinned at x = l. Coordinate shape functions that 

satisfy all the boundary conditions at the fixed-pinned ends were employed in a one 

parameter and a two parameter displacement shape functions as Equations (43) and (44). 

The Galerkin variational integral statement for a one-parameter solution was obtained as 

Equation (15). For two parameter solution, the Galerkin variational integral statement 

was obtained as the system of Equations (61) and (62) upon evaluation of the integrals. 

For a one-parameter Bubnov-Galerkin method, the problem reduced to an algebraic-

eigen value problem expressed by Equation (48). The characteristic buckling equation 

was obtained as Equation (49) and the solution gave the critical buckling load for one 

parameter Bubnov-Galerkin solution as Equation (50). Similarly, the two parameter 

Bubnov-Galerkin solution reduced to the algebraic eigen-value problem expressed by 

Equation (63) or (65). The corresponding characteristic buckling equation was found as 

Equation (66). Equation (66) yielded a quadratic equation in terms of , which was 

solved to obtain the critical buckling load for a two parameter Bubnov-Galerkin solution 

as Equation (69). Comparison of the one term and two term Bubnov-Galerkin solutions 

with the exact solutions given as Equation (70) shows the one term solution has a 

relative error of 4% while the two terms Bubnov- Galerkin solution has a relative error 

of 0.77%. This shows the effectiveness of the Bubnov-Galerkin method in the elastic 

buckling analysis of Euler columns with fixed-pinned ends. 

 

 

5.0 Conclusions 

 

From the study, the following conclusions can be made: 

 

i. The Bubnov-Galerkin variational method simplifies the boundary value 

problem of elastic buckling of Euler-column to an algebraic eigenvalue 

problem. 
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ii. As the number of undetermined generalized displacement parameters 

increase, the accuracy of the Bubnov-Galerkin method increases provided 

the coordinate (shape) functions satisfy all the boundary conditions at the 

ends. 
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