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Abstract: The Stodola-Vianello iteration method was implemented in this work to determine the 

critical buckling load of an Euler column of length l with fixed end (x = 0) and pinned end (x = 

l), where the longitudinal axis is the x-direction.The critical buckling loads were found to be 

variable, depending on the x-coordinate. Integration and the Rayleigh quotients were used to find 

average buckling coefficients. First iteration gave relative errors of 4% using integration and 

2.5% using Rayleigh quotient.Second iteration gave average relative errorsless than 1% for both 

the integration and the Rayleigh quotients. Better estimates of the critical buckling loads were 

obtained using the Rayleigh quotient in the Stodola-Vianello’s iteration. 

 

Keywords: Stodola –Vianello’s iteration method Euler column, critical buckling load, flexural 

buckling. 

 

 

 

 
1.0  Introduction  

 

1.1 Background  

 

Columns are long slender bars that carry axial compressive forces. They are important 

structural members in civil, mechanical, structural and aeronautics systems. They can be 

vertical, horizontal or inclined, and are classified as short, intermediate or long columns. 

Short columns under axially applied compressive forces fail by compressive yielding of 

their materials shown physically by crushing failure (Rao, 2017; Homepages 2017; 

Lagace, 2009; Punmia et al., 2002). Long columns under axial compressive force fail by 

sudden excessive lateral displacement, a phenomenon called flexural buckling (Rao, 

2017; Homepages 2017; Lagace, 2009; Punmia et al., 2002). Intermediate columns 

under axial loads fail by a combination of compressive yielding and flexural buckling. 
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1.2 Euler’s Theory of Buckling 

 

Euler considered the moment equilibrium of an elemental part of an elastic column of 

length l with pinned ends x = 0 and x = l and subjected to axial compressive force P, 

together with the moment – curvature equations to obtain the differential equation for 

the lateral deflection v(x) as the second order differential equation-Equation (1); 

(Homepages, 2017; Lagace, 2009; Punmia et al., 2002; Jayaram, 2007; Megson, 2005). 

 

 

2
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v x

EIdx
+ =        (1) 

 

where E is the modulus of elasticity of the column material, I is the moment of inertia. 

 

1.3 General Differential Equation for Elastic Column Buckling 

 

A mere general differential equation for the elastic column buckling problem employs 

the formulation principles similar to the flexure of beams, but includes the internal axial 

forces in the resulting equations. The internal forces and moments acting in an 

elemented part (∆x) of an elastic column of length under axial compressive forces, and 

arbitrarily supported at the ends x = 0, and x = l are shown in Figure 1. 

 

 

 
 

Figure 1: Internal forces and bending moment acting on an elemental column 

 

 

Consideration of vertical equilibrium yields 
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dQ

q x
dx

=          (2) 
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where Q(x) is the shear force distribution, at an arbitrary section, x, and q(x) is the 

distribution of transverse load. 

 

For horizontal equilibrium, 

  

( ) ( ) ( )
dP

P x P x x P x dx
dx

= +  = +        (3) 

 

P(x) is constant 

 

For moment equilibrium, 

  

( )dM dv x
P Q

dx dx
+ =         (4) 

 

The differential equation for rotational equilibrium of the elemental column has an 

additional term Pdv/dx which is absent from the corresponding equation for Euler – 

Bernoulli beam flexure theory. 

 

By differentiation of Equation (4) with respect to x,  

  

( ) ( )
d dM dv dQ

P q x
dx dx dx dx

+ = =       (5) 
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      (6) 

 

Application of the moment curvature relation yields 

  
2 2 2

2 2 2
( )

d d v d v
EI P q x

dx dx dx

 
+ = 

 
       (7) 

 

For prismatic, homogeneous columns EI is constant, and the differential equation for the 

elastic buckling of columns with any type of supports becomes the fourth order 

equations [6, 7]: 

  
4 2

4 2
( )
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EI P q x
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1.4 Assumptions of the Euler’s Theory of Column Buckling  

 

Euler’s theory of elastic column buckling is formulated based on the following 

assumptions (Rao, 2017; Punmia et al., 2002; Jayaram, 2007; Megson, 2005; Lowe, 

1971): 

 

i. The column is straight in the longitudinal direction before the axial load is 

applied. 

ii. The cross-sectional dimension is uniform along the longitudinal axis 

iii. The material is homogeneous and isotropic 

iv. The self-weight is neglected 

v. The axial compressive load is concentrically applied. 

vi. The axial compression is small and neglected 

vii. The failure is due to flexural buckling 

 

Recent research publications on the elastic buckling of Euler columns of prismatic and 

non-prismatic cross-sections used various analytical tools such as the variational 

iteration method, Newmark method, homotropy perturbation method and integral 

equation method. Some of the recent publications/studies on the elastic buckling of 

Euler columns are as follows: Coskun and Atay, (2009); Huang Yong and Luo Qi – Zhi 

(2011); Yayli, (2008); Riley, (2003); Atay, (2009); Arbabi and Li, (1991) and Coskun, 

(2010). 

 

The research aim is to determine the elastic buckling loads of Euler columns using the 

Stodola-Vianello’s iteration method. The specific objectives are as follows: 

 

(i) To determine the Stodola-Vianello’s iteration for Euler columns with fixed 

pinned ends at x =0, and x = l respectively 

(ii) To implement the Stodola–Vianello’s iteration scheme for Euler column with 

fixed-pinned ends in order to determine the Euler buckling load and the critical 

buckling load. 

 

1.5 Issue Related to Elastic Buckling of Euler Column 

 

The research problem is to solve the fourth order ordinary differential equation given as 

Equation (8) for the problem of elastic buckling of Euler column fixed at x = 0, and 

pinned at x = l with prismatic cross-sections using the Stodola–Vianello iteration 

method and determine the Euler column elastic buckling loads. 
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2.0  Theoretical Framework and Methodology 

 

The fourth order ordinary differential equation for the elastic buckling of Euler columns 

under axial compressive load P when no transverse distributed load qz(x) is applied is 

given from Equation (8) by 

 

0( )ivEIv x Pv+ =          (9) 

 

where the primes denote differentiation with respect to, x, the longitudinal coordinate 

axis. 

 

For prismatic columns EI is constant. For constant loads P is constant. Integration of 

Equation (9) with respect to x yields: 

  

1( ) ( )EIv x Pv x c + =        (10) 

 

where c1 is an integration constant 

 

Integration again yields: 

  

1 2( ) ( )EIv x Pv x c x c + = +        (11) 

 

where c2 is an integration constant 

 

Rearranging Equation (11) we obtain, 

  

1 2( )
( )

c x cPv x
v x

EI EI

+
 = − +        (12)

  

( )1 2( ) ( )
c x cP
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EI P P
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P
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−
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where    

1
1
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a

P

−
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2
2

c
a

P

−
=          (16) 

 

Integrating Equation (14), 
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where a3 is an integration constant. 

 

Integrating Equation (17), 
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where a4 is an integration constant. 

 

The iteration scheme for the (k – 1)th iteration is: 

  

( )1 1
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Then equation (19) becomes 

  

1( ) ( )k kcrP
v x v x

EI

− =         (21) 

 

From Equation (21), the eigenvalue or buckling load is obtained from the iteration: 
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where the four integration constants ai, i = 1,2,3, 4 are obtained at each iteration step by 

the application and enforcement of the boundary conditions. 

 

The Stodola-Vianello’s iterations scheme given by Equation (22) gives the critical load 

for Pcr in terms of the independent coordinate variables x and the average values of Pcr 

can be obtained for the column, to be the representative buckling load, and thus the 

buckling, coefficients are determined. The average critical buckling load can be obtained 

by integration to have 

  

1

0
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l k

cr

v x
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v x

−

=          (23) 
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
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      (24) 

Rayleigh quotient can be introduced as defined for the Euler column elastic buckling 

problem to have for the kth iterations: 
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3.0  Application of The Stodola-Vianello’s Iteration Scheme for Fixed –Pinned 

Euler Column 

 

3.1  Integration Constants 

 

An Euler column of length l with the longitudinal direction denoted as the x coordinate 

and the end A(x = 0) fixed and the other end B(x = l) pinned as shown in Figure 2 was 

considered. 
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Figure 2: Euler column with fixed pinned ends 

 

The boundary conditions are 

  

0A Av =  =     `     (26) 

  

0B Bv M= =          (27) 

 

or,    

 

v(x = 0) = 0         (28) 

  

0 0 0( ) ( )x v x = = = =         (29) 

  

0( ) ( )v x l v l= = =          (30) 

  

0( )v x l = =           (31) 

 

From Equation (19) 

  

40 0( )v a= =          (32) 

 

From Equation (17) 

  

30 0( )v a = =          (33) 

 

From Equation (14)  
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1 2 0( )v l a l a+ + =         (35) 

 

From Equation (30) 

  

1 2 0a l a+ =          (36) 

  

2 1a a l= −          (37) 

 

Equation (18) then reduces to: 
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Using Equation (30) 
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3.2  Stodola- Vianello’s First Iteration Scheme 

 

A polynomial shape function that satisfies the fixed pinned end conditions at x = 0 and x 

= l is  

  
4 3 2 22 5 3( ) ( )v x a x lx l x= − +        (51) 

 

where a is the undetermined or generalized parameter of the deflection field. 

 

From Equation (50), 
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The Stodola-Vianello’s iteration for the critical load is from Equation ( 22) 
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where K(x) is the buckling coefficient  

 

The buckling coefficients are tabulated for various points on the column in Table 1. 

 
Table 1: Buckling coefficients for fixed pinned columns 

x/l 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

K(x) 30 26.692 24.406 22.792 21.654 20.87 20.362 20.075 19.962 19.967 20 

 

 

 

 

 

 

 



Malaysian Journal of Civil Engineering 30(3):378-394 (2018) 389 

 
3.3  Average Buckling Coefficients 

 

The average buckling coefficient is found as:  

 

1
30 26 692 24 406 22 792 21 654 20 87 20 362 20 075

11

19 962 19 967 20

( . . . . . . .

. . )

avK = + + + + + + + +

+ +

(59) 

 

The average buckling load is found by using integration as: 
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3.4 Use of Rayleigh Quotient 

 

First Stodola –Vianello’s iteration yielded Equation (54). Thus, by differentiation of 

Equation (54) with respect to x, 

  

5 4 2 3 3 2 424 75 60 6 12
60

( )
dv a

x lx l x l x l x
dx

−
= − + + −     (67) 

 

Differentiating again, 
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Then, 
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2
20 243.cr

EI
P

l
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3.5  Second Stodola-Vianello Iteration Scheme 

 

The second Stodola-Vianello’s iteration scheme is: 

  

3 3
2 1 1 1

3 2
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3

2 2
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8400
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The critical buckling load for the second Stodola-Vianello’s iteration is: 

  
1

2

( )

( )

( )

( )
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P

v x dx
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4 3 2 2 3 4
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2 2
2

( ) ( )( )cr

EI
P K x

l
=         (77) 

 

where K(2)(x) is the buckling coefficient for the second Stodola-Vianello’s iteration for 

the Euler column with fixed pinned ends. K(2)(x) is tabulated for various values of x 

shown in Table 2. 

 
Table 2: Stodola-Vianello’s 2nd iteration buckling coefficient for fixed pinned columns. 

x/l 0 0.125 0.25 0.5 0.75 1 

K(x) 21.54 21.367 21.03 20.40 20.08 20 

 

The average value of the Stodola-Vianello’s second iteration buckling coefficient is  

  
2 1

6
21 54 21 367 21 03 20 40 20 08 20( ) ( . . . . . )K = + + + + +    (78) 

  
2 20 78( ) .K =          (79) 
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By the use of integration, 
2( )

crP  is given by: 

  

1

2 0

2

0

( )

( )

( )

( )

( )

l

cr l

v x dx

P EI

v x dx

=





         (80) 

  

2
2

20 38( ) .cr

EI
P

l
=         (81) 

 

The use of Rayleigh quotient in the second Stodola-Vianello’s iteration gives: 

  

2
2

20 196( ) .cr

EI
P

l
=         (82) 

 

for fixed pinned Euler columns.nThe exact solution for Pcr is: 

  

2
20 1907.cr

EI
P

l
=         (83) 

 

 

4.0 Discussion 

 

The Stodola-Vianello’s iteration method has been effectively implemented in this work 

to determine the critical buckling load of an Euler column under axial compressive force 

P when the end x = 0 is fixed and the other end x = l is pinned; and no transverse 

distributed load is applied. The Stodola-Vianello iteration scheme was formulated using 

successive integration to obtain the iteration scheme for buckling as Equation (22). One 

parameter displacement shape function that satisfies all the end boundary conditions was 

used to obtain the first and second Stodola – Vianello iterations as Equations (54) and 

(74), respectively. The buckling coefficients obtained were found to be variable, 

depending upon the longitudinal coordinate variable x. The buckling coefficients were 

found for first Stodola – Vianello iteration and were tabulated in Table 2. 

 

The first iteration gave an average critical buckling load given by Equation (59). The 

second iteration gave an average critical buckling coefficient given by Equation (79). 

The use of integration gave an average critical buckling load as Equation (66) for the 

first iteration and Equation (81) for the second. Use of Rayleigh quotient in the Stodola-



Malaysian Journal of Civil Engineering 30(3):378-394 (2018) 393 

 
Vianello iteration yielded a critical buckling load given by Equation (71) for the first 

iteration, and Equation (83) in the second iteration. 

 

The relative error of the first iteration was found to be 4% for the method of integration 

and 2.59% for the Rayleigh quotient. The second Stodola-Vianello iteration yielded 

relative errors of 0.94% for the method of integration, and 0.026% for the Rayleigh 

quotient. 

 

 

5.0 Conclusions 

 

From the work, the following conclusions can be made: 

 

i.  The Stodola-Vianello iteration method reduces the boundary value problem of 

elastic buckling of Euler columns to an iteration scheme for finding the successive 

values of v(x) from given functions of v(x). 

ii.  The buckling coefficients K(x) were found to be variables, depending upon the 

longitudinal coordinate variable, x. 

iii.  The use of the Rayleigh quotient in the Stodola-Vianello iteration yielded rapidly 

convergent results for the buckling coefficients, as compared with the simple 

averaging and integration methods. 
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