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Graphical abstract 

 

Abstract 
 
Modified Meyerhof method is a popular method to calculate pile geotechnical axial capacity in Malaysia currently. From 
past experience, pile design based on empirical and analytical method produce variability of predicted capacity, in which, 
there is a wide scatter of predicted capacities and tendency for the predictions to be conservative, i.e. to underestimate the 
load capacity. This study provides options of machine learning and statistical approach for prediction of pile capacity based 
on soil investigation and dynamic pile load test result. It serves as an additional checking for engineer during design of pile 
based on conventional empirical method. It also helps to provide deeper insights of non-linear variables related to pile 
capacity through machine learning and statistical approach. This study helps engineer to design pile foundation optimally, 
economically and safely. The prediction of pile geotechnical axial capacity with machine learning technique and statistical 
approach for local marine clay soil in Penang, Malaysia is proposed in this study. The information from soil investigation 
report and dynamic pile load test report are gathered from six projects at Batu Kawan and Nibong Tebal located in Penang 
state that contributed 439 numbers of data. The skin friction factor, end bearing factor and pile geotechnical axial capacity 
are computed and predicted using empirical method, machine learning model and statistical model. Support Vector 
Machine illustrate best fit model for predicting skin friction factor with R2 of 0.517 while Random Forest seems to be the 
best fit model for predicting end bearing factor with R2 of 0.264. Random Forest is found to be the best model in predicting 
the geotechnical pile axial capacity compare to other models as it explains 96.2% of the variability of pile capacity. 
 
Keywords: Pile geotechnical axial capacity, machine learning, skin friction factor, end bearing factor, statistics 
 
Abstrak 
 
Kaedah Meyerhof yang diubahsuai adalah kaedah yang popular untuk mengira kapasiti paksi geoteknikal cerucuk di 
Malaysia pada masa ini. Daripada pengalaman lepas, reka bentuk cerucuk berdasarkan kaedah empirikal dan analitikal 
menghasilkan kapasiti yang berbeza. Terdapat serakan luas kapasiti ramalan dan kecenderungan untuk ramalan itu 
konservatif, iaitu kapisiti cerucuk rendah diramalkan. Kajian ini menyediakan pilihan pembelajaran mesin dan pendekatan 
statistik untuk ramalan kapasiti cerucuk berdasarkan penyiasatan tanah dan keputusan ujian beban cerucuk dinamik. Ia 
berfungsi sebagai pemeriksaan tambahan untuk jurutera semasa reka bentuk cerucuk berdasarkan kaedah empirikal 
konvensional. Ia juga membantu untuk memberikan pandangan yang lebih mendalam tentang pembolehubah bukan linear 
yang berkaitan dengan kapasiti cerucuk melalui pembelajaran mesin dan pendekatan statistik. Kajian ini membantu jurutera 
mereka bentuk asas cerucuk secara optimum, menjimatkan dan selamat. Satu kaedah baru untuk meramal kapasiti paksi 
geoteknikal cerucuk dengan teknik pembelajaran mesin dan pendekatan statistik untuk tanah liat marin tempatan di Batu 
Kawan, Pulau Pinang, Malaysia dicadangkan. Sebanyak enam projek di Batu Kawan dan Nibong Tebal yang terletak di negeri 
Pulau Pinang menyumbang kepada 439 bilangan data. Maklumat daripada laporan penyiasatan tanah dan laporan ujian 
beban cerucuk dinamik dikumpulkan. Faktor geseran kulit, faktor galas hujung dan kapasiti paksi geoteknikal cerucuk dikira 
dan diramal menggunakan kaedah empirikal, model pembelajaran mesin dan model statistik. Mesin Vektor Sokongan 
menggambarkan model kesesuaian terbaik untuk meramalkan faktor geseran kulit dengan R2 sebanyak 0.517 manakala 
Random Forest nampaknya model paling sesuai untuk meramalkan faktor galas akhir dengan R2 sebanyak 0.264. Random 
Forest ialah model terbaik untuk meramalkan kapasiti paksi geoteknik cerucuk berbanding model lain kerana ia 
menerangkan 96.2% kebolehubahan kapasiti cerucuk. 
 
Kata kunci: Kapasiti paksi geoteknik cerucuk, pembelajaran mesin, faktor geseran kulit, faktor galas hujung, statistik 
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1.0  INTRODUCTION 
 
Reinforced Concrete (RC) pile is a common construction 
material for building and infrastructure foundation in Malaysia 
because of its material availability and economical application. 
There are numerous approaches of designing reinforced 
concrete (RC) pile. Modified Meyerhof method is the most 
popular method to calculate pile geotechnical axial capacity in 
Malaysia currently. This method correlates SPT-N value to skin 
friction factor, Ks and end bearing factor, Kb. Standard 
Penetration Test (SPT) is a very common and economical way 
of soil investigation in Malaysia. Skin friction factor and end 
bearing factor varies from place to place depends on the local 
soil characteristics.  

However, foundation design using piles based on 
empirical approaches to soil profile, interaction between soil 
and pile structure, and distribution of soil resistance along the 
pile do not produce really quantitative data (Shooshpasha et 
al., 2013). While analytical method has it disadvantages such as 
the difficulty of determining the appropriate geotechnical 
parameters. Proper geotechnical modelling of a site remains 
the most challenging task facing the pile designer. From past 
experiment and study, pile design based on empirical and 
analytical method produce variability of predicted capacity. 
There is a wide scatter of predicted capacities and tendency for 
the predictions to be conservative, i.e. to underestimate the 
load capacity. It is therefore alarming to consider that even for 
the reasonably well-understood element of axial load capacity, 
there is significant room for prediction difference across 
different prediction methods and between individual predictors 
employing the same methodologies (Poulos, 1988). The 
majority of piling contracts include load tests to confirm 
capacity, which is typical given the high level of uncertainty in 
forecast techniques (Randolph, 2003). 

This study aims to propose alternative method of 
predicting geotechnical axial capacity of reinforced concrete 
(RC) driven pile based on soil investigation report and dynamic 
pile test conducted at Batu Kawan, Penang, Malaysia by 
training, validating and testing four (4) machine learning 
models and develop statistical model prediction equation for 
pile geotechnical axial capacity. 
 
1.1 Pile Design 
 
The design and analysis of pile foundations can be divided into 
three categories whereby category 1 is known as empirical 
method while category 2 and 3 are known as analytical method 
(Poulos, 1988). 

Empiricism has been a mainstay of pile foundation 
design for a long time. Between the 1950s and the 1980s, 
significant advancements in pile design techniques based on 
good theoretical assumptions were made. According to prior 
research and experimentation, pile designs that rely on 
empirical and analytical methods have unpredictable 
anticipated capacities. The anticipated capacities are widely 
dispersed, and there is a propensity for the estimates to be 
cautious, or to underestimate the load capacity. It is therefore 
alarming to consider that even for the reasonably well-
understood element of axial load capacity, there is significant 
room for prediction difference across different prediction 

methods and between individual predictors employing the 
same methodologies (Poulos, 1988). 

Even while scientific approaches to pile design have 
made significant strides in recent years, such as correlation 
with static cone resistance, unconfined strength, rock 
classification, total stress, effective stress and cavity expansion, 
the most fundamental component of pile design—estimating 
axial capacity—remains mainly dependent on empirical 
correlations (Randolph, 2003). 

To date, Modified Meyerhof formula is still the most 
popular pile design method in Malaysia. The formulae are 
derived based on empirical study on relationship between SPT-
N value, pile geometry and pile capacity. The formulae are 
shown in following Equation (Eq. 1, 2 & 3): 
 
Ultimate Skin Friction = Nav × Ap × L × Ks  (1) 
 
Ultimate End Bearing = Kb × Nb × Ab  (2) 

 
Pile Allowable Axial Capacity  
= (Ultimate Skin Friction)/FOS + (Ultimate End Bearing)/FOS  (3) 
 
Where Nav is the average SPT-N value along pile shaft, Nb is the 
SPT-N value at pile base, Ap is pile shaft area, Ab is pile base 
area, Ks is the friction factor of 2.0 (sand), 2.5 (silt) and 3.0 
(clay), Kb is the ending bearing factor of 400 (sand), 300 (silt) 
and 200 (clay). For design norm, the maximum skin friction 
stress, fs is 100 kN/m2 and maximum end bearing stress, fb is 
10,000 kN/m2. Whereas FOS is factor of safety normally in a 
combination of FOS = 2 for both shaft friction and end bearing 
or FOS = 1.5 for shaft friction and FOS = 3.0 for end bearing. 
Lower FOS combination shall be selected. Skin friction stress, fs 
and end bearing stress, fb can be computed following Equation 
(Eq. 4 & 5). 
 
f s = Ks x Nav (4) 
 
fb = Kb x Nb (5) 
 
As we can see from above equations, the type of soil (sand, silt, 
clay) plays a very important role in determining the pile 
allowable axial capacity. However, tropical residual soils such as 
in Malaysia are generally complex in soil characteristics, its 
properties change over short distance. 
 
1.2 Standard Penetration Test 

 
Engineering properties and soil profiles are developed using the 
Standard Penetration Test (SPT). The SPT is thought to be the 
most traditional in situ soil testing method and is still the 
common testing methodology currently to explore the soil 
profile at a site. Its first iteration stems from the start of the 
19th century. In 1902, open-end pipe of 25mm diameter during 
wash-boring process was introduced in United States. This is 
the beginning of dynamic testing and sampling of soils. 
Between the late 1920s and early 1930s, the test was 
standardized using a 51mm outside diameter split-barrel 
sample, driven into the soil with a 63.5kg weight having a free 
fall of 760mm (Shooshpasha et al., 2013). 

The fundamental SPT implementation process 
involves providing an external driving force to a thick, hollow 
tube in order to press it into the soil while measuring the soil 
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resistance in terms of blow count. Soil samples and data on 
groundwater are also gathered while the SPT goes forward. The 
number of strikes needed to penetrate each 150mm section 
into the earth is recorded. This is carried out up until 450 mm in 
length or till penetration refusal. In most cases, the first 150mm 
of the first record of progress (seating) is deleted, while the 
second and third increments are recorded and added to yield 
the number of blows N per 300mm. 

Research conducted by Toh et al. (1989) concluded 
that design of piles based on empirical relationship between 
pile capacities and SPT-N value by adopting international 
practice and further developed to local experience due to 
economic cost of SPT compare to relatively high cost of 
pressure meter or any other instrument in Malaysia (Toh et al., 
1989). However, there are disadvantages for using SPT for 
recovery of suitable sample for laboratory testing. 
 
1.3 Dynamic Pile Load Test 

 
A dynamic load test tracks how a pile responds to hammer 
strikes delivered at the pile head. The observations are then 
examined using the stress wave theory to forecast the soil 
resistance that would be mobilised by the pile under static load 
circumstances. Due to the extremely high rate of applied 
loading, dynamic load tests are unable to account for time-
related effects like consolidation, relaxation, and creep. 
Dynamic load tests occasionally need to be calibrated with 
static load tests. The pile has electronic gauges attached to it. 
With known pile parameters, the gauges measure the 
acceleration of the pile and subsequently, indirectly, the 
velocity and displacement. As the hammer impacts the pile, the 
gauges also detect strain in the pile slightly below the head.  

Amongst static analysis, dynamic analysis, dynamic 
testing, pile load testing and in-situ testing, the pile load test is 
considered as the best method to determine the pile bearing 
capacity. However, such a method is time-consuming, and the 
costs are often difficult to justify for ordinary or small projects, 
whereas other methods have lower accuracy (Pham et al., 
2020). 
 
1.4 Machine Learning 

 
Machine learning is a field of computer science that involves 
the development of algorithms and statistical models that 
enable computer systems to automatically improve their 
performance on a particular task by learning from data, without 
being explicitly programmed. The goal of machine learning is to 
enable computers to automatically learn and adapt to new 
information without human intervention. This is done by 
creating algorithms and models that analyse and interpret data, 
identify patterns and trends, and make predictions or decisions 
based on the information learned. 

There are three different kinds of machine learning: 
reinforcement learning, unsupervised learning, and supervised 
learning. Supervised machine learning involves the provision of 
both the desired input and output. Unsupervised machine 
learning is the process of teaching an algorithm to operate on 
data that has not been categorised or labelled while enabling 
the system to make decisions on its own. Reinforcement 
machine learning enables a computer to automatically decide 
the appropriate conduct within a particular situation. 
 

1.5 Machine Learning for Predicting Pile Capacity 
 

There are many machine learning techniques being employed 
to predict pile capacity such as support vector machine, neural 
network, iterative technique, gradient boosted tree technique, 
genetic algorithm, etc. In the field of geotechnical engineering, 
machine learning has been applied to various aspects of pile 
design, including the prediction of pile capacity, the 
determination of the pile-soil interaction behaviour, and the 
optimization of pile design parameters. 

Goh was one of the first, if not the first, proponents 
of ANNs in geotechnical engineering, and he released a study in 
1994 that used ANNs to evaluate the possibility for seismic 
liquefaction (Jaksa and Liu, 2021). 

The ultimate capacity of driven piles was predicted 
using ANNs (Abu-Kiefa, 1998; Lee and Lee, 1996). However, 
only a small quantity of data was used to create their models, 
and none of them were built utilising the more precise 
measurements of soil characteristics obtained from the CPT 
results (Shahin, 2010). Numerous geotechnical engineering 
applications have used ANNs. 

Mahesh and Surinder (2008) modelled the total pile 
capacity using dynamic stress-wave data using radial basis 
function and polynomial kernel-based support vector 
machines, and the outcomes were contrasted with a 
generalised regression neural network approach. The results 
indicate that generalised regression neural network-based 
approaches perform better than support vector machines, 
while polynomial kernel-based SVMs may forecast total pile 
capacity using stress-wave data linearly (Mahesh and Surinder, 
2008). 

Maizar et al. (2013) utilized Artificial Neural Network 
(ANN) for prediction of axial capacity of a driven pile by 
adopting high strain dynamic testing i.e. Pile Driving Analyzer 
(PDA) data from Indonesia and Malaysia. Pile characteristics 
and hammer energy are two examples of the parameters 
recorded. The findings demonstrate that when stress wave 
data, driven pile characteristics, and driving system 
characteristics are taken into account in the input data, neural 
network models can accurately forecast the axial bearing 
capacity of piles. The model's validation shows that the 
quantity of data is not always correlated with the accuracy of 
the forecast (Maizar et al., 2013). 

Based on the results of the cone penetration test 
(CPT), Kordjazi et al. (2014) created SVM models to forecast the 
ultimate axial load-carrying capacity of piles. The data includes 
details on the geometry of the piles, the outcomes of full-scale 
static pile load tests, and CPT results. According to the 
comparison (Kordjazi et al., 2014), the SVM models created in 
this research perform better than the conventional techniques. 

In order to predict the axial pile capacity, Benali et al. 
(2017) proposed Artificial Neural Networks (ANN) and Principal 
Component Analysis (PCA). The Back-Propagation Multi-Layer 
Perceptron (BPMLP) with Bayesian Regularisation (BR) is the 
technique used in the model. The created model has appealing 
characteristics and advantages that make it a promising tool, 
according to an evaluation of the novel method's prediction 
performance versus a number of conventional SPT-based 
approaches (Benali et al., 2017). 

Pham et al. (2020) used random forest (RF) and 
artificial neural network (ANN) methods to forecast the 
eventual axial bearing capacity of driven piles. The outcomes 
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revealed that RF performed better than ANN and other 
techniques. The diameter of the pile, the length of the pile 
segments, the natural ground elevation, the pile top elevation, 
the guide pile segment stop driving elevation, the pile tip 
elevation, the average standard penetration test (SPT) value 
along the embedded length of the pile, and the average SPT 
blow counts at the tip of the pile were collected from driven 
pile static load test reports. The output variable was the 
ultimate load on the pile top. The average SPT value and pile tip 
elevation was shown to be the most crucial variables in 
determining the axial bearing capacity of piles by sensitivity 
analysis (Pham et al., 2020). 

Six machine learning algorithms with different biases 
were taught by Gomes et al. (2021) and validated using a leave-
one-out cross validation method. Using the Décourt-Quaresma 
dataset, random forest (RF) was the approach that performed 
the best. The study also included a case study that 
demonstrated the top performing models outperformed semi-
empirical approaches in two of the three piles taken into 
consideration (Gomes et al., 2021). 

Systematic literature review and mapping done by 
Carvalho et al. (2023) has shown the machine learning has 
become predominant in the prediction of pile bearing capacity 
in the past twenty-five years and has surpassed the most 
traditional regression-based methods both in number and 
performance. In comparison to other methods, ANN has shown 
to be a very efficient tool when compared to classic empirical 
methods that are consolidated. ANNs have performed better, 
and, in most cases, results are much closer to the bearing 
capacities measured by pile load tests (Carvalho et al., 2023). 

Overall, using machine learning to improve the 
precision and effectiveness of pile design has showed promise 
and future study in this area is likely to progress the industry. 
Numerous researchers have started investigating the 
disciplinary or thematic applications of ML methods in recent 
years as a result of the rapid growth of ML and its 
dissemination across numerous engineering fields. In fact, deep 
learning (DL) and machine learning (ML) are particularly useful 
in and relevant to geotechnical engineering, where 
measurements—especially in situ—are influenced by 
measurement and model uncertainties, data are frequently 
sparse, and soil and rock variability can frequently be highly 
variable. 
 
 
2.0 METHODOLOGY 
 
In overall, the procedures are divided into 3 phases, i.e., Phase 
1 – data collection and pre-processing, Phase 2 – calibration of 
Ks and Kb value and Phase 3 – prediction of geotechnical pile 
axial capacity. 
 
2.1 Study Sites 
 
Total of six projects at Batu Kawan and Nibong Tebal located in 
Penang State contributed 439 numbers of data. The sites are 
chosen based on location of similar geological formation, i.e. 
Quaternary age marine and continental alluvial deposits: clay, 
silt, sand, peat with minor gravel. The site location is as shown 
in Figure 1. 
 

 

 

 
Figure 1 Location of study area in geological map 

 
 

2.2   Data Collection 
 

Throughout this study, Excel spreadsheet with data analysis 
add-on software, XLSTAT, were utilised to perform data 
compilation, data pre-processing, data visualization, statistical 
interpretation, statistical modelling, machine learning training, 
validation and testing. The qualitative and quantitative 
parameters used in this study are tabulated in Table 1. 
 

Table 1 Summary of data source 
 

Source Data Unit 
Soil Investigation 
Report 

Pile penetration depth m 
Pile shaft and base area m2 
Pile shape - 
Average SPT-N along pile shaft and 
SPT-N at pile base 

- 

Soil type along pile shaft and soil 
type at pile base 

- 

Dynamic Pile Load Test 
Report 

Pile shaft and base stress kN/m2 
Pile shaft and base resistance kN 

 
2.3    Detail Procedure 

 
The detail procedure is outlined below: 

1) Data collection and pre-processing (pile penetration 
depth, pile shaft area, pile base area, pile shape, SPT-
N along pile shaft, SPT-N at pile base, soil type, skin 
friction stress, end bearing stress, skin friction 
resistance, end bearing resistance, total pile 
resistance) from soil investigation report and dynamic 
pile load test report 
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2) Calibration of skin friction factor, Ks and end bearing 
factor, Kb value for empirical method (Modified 
Meyerhof) 
a) Ks and Kb were back calculated from the pile 

stress and pile resistance obtained from dynamic 
load test 

b) Machine learning and statistical model were 
developed for comparison with manual back 
calculation 

3) Prediction of geotechnical pile axial capacity using 
machine learning models and statistical model 
a) Develop machine learning models by 

partitioning dataset for training, validation and 
testing: 80% for training and validation, 20% for 
testing 

b) Develop statistical model by perform Analysis of 
Covariance (ANCOVA) with same dataset for 
machine learning model to propose statistical 
model prediction equation 

c) Setup model performance indicators comparison 
amongst machine learning model and statistical 
model 

d) Compute pile geotechnical axial capacity with 
empirical method 

e) Compare pile geotechnical axial capacity 
between empirical method, machine learning 
models and statistical model  

 
Figure 2 shows the flow chart of research methodology. 
 

 
Figure 2: Flow Chart 

 

3.0  RESULTS AND DISCUSSION 
 
3.1    Data Compilation 

 
The first objective of this study is to compile data from soil 
investigation report and dynamic pile load test report. Skin 
friction factor (Ks) and end bearing factor (Kb) were computed 
via following equation (Eq. 6 & 7): 

 
 Ks = fs/Nav  (6) 
 
 Kb = fb/Nb  (7) 
 

where Ks is the skin friction factor, fs is the average skin friction 
stress (kN/m2), Nav is the average SPT-N value along pile shaft, 
Kb is the end bearing factor, fb is the end bearing stress (kN/m2), 
Nb is the SPT-N value at pile base. 

 
Table 2 shows range of actual pile capacity and pile penetration 
depth with respect to pile size for six numbers of projects. It 
gives an overview on the minimum and maximum actual pile 
capacity and pile penetration depth.  
 
3.2    Skin Friction and End Bearing Factor 

 
The second objective of this study is to compare actual skin 
friction factor, Ks and end bearing factor, Kb value back 
calculated from dynamic pile test with Ks and Kb value in 
original design assumption, i.e. modified Meyerhof empirical 
method. Mean value of Ks and Kb was back calculated based on 
dynamic pile load test result and tabulated in Table 3. 
Generally, there is no change suggested for design value of skin 
friction factor, Ks of 2.5 and 2 for silt and sand respectively as 
they are quite consistent with findings of Meyerhof (1976), Gue 
(2007) and Tan et al. (2009). However, it is worth to mention 
that most of the previous findings proposed Ks value of 2.5 for 
skin friction factor of clay. Whereas the end bearing factor Kb 
for sand, silt and clay, the results attest to corroborate with 
Decourt (1995), Gue (2007) and Tan et al. (2009) with 
downgraded value of 250, 200 and 100 respectively. 

Though Ks and Kb value have been calibrated as 
shown in above table, it only makes the pile capacity prediction 
more conservative and challenging as the current Modified 
Meyerhof empirical method predicted a scatter wide range of 
pile capacity compare to load test result, i.e. from 5.76% to 
94.96%. Neither downgrade nor upgrade of skin friction factor 
and end bearing factor will help in minimise the wide gap of 
predicted pile capacity. The empirical method of pile design, 
which oversimplified the complexities of soil response such as 
reduction in effective stresses, degree of remoulding during 
pile installation, relaxation of radial total stress during 
consolidation, and reduction in radial effective stress during 
loading, does not reflect the design of piles based on science 
and theory (Randolph, 2003). It is notable that skin friction 
factor and end bearing factor of silt is on very high side. For 
sand and clay, the percentage difference between designed 
and back calculated value is between -42% to 32%. However, 
silt shows a vast difference of 102% to 181%. This makes the 
calibration more prone to error. 
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Table 2: Range of Actual Pile Capacity and Pile Penetration Depth With Respect to Pile Size 
 

Pile Size Minimum Actual Pile 
Capacity (kN) 

Maximum Actual Pile Capacity (kN) Minimum Actual Pile Depth (m) Maximum Actual Pile 
Depth (m) 

150mm x 150mm 334 461 22.5 23.0 
200mm x 200mm 265 1422 28.0 29.4 
250mm x 250mm 1354 1815 38.3 44.0 
250mm x 250mm 1141 1307 29.0 29.4 
300mm x 300mm 1007 1293 27.0 39.0 
300mm x 300mm 1469 1886 23.0 35.0 
300mm x 300mm 1720 1732 35.5 35.5 
350mm x 350mm 2158 4385 28.7 56.0 
400mm x 400mm 2526 4131 35.5 47.0 
450mm diameter 2106 3177 22.2 35.4 
500mm diameter 2325 2806 33.0 47.0 

Table 3: Summary of Skin Friction and End Bearing Factor 
 

Factor Soil Design 
Assumption 

Mean Value Based on Back 
Calculation of Pile Load Test 

% 
Difference 

Suggested Design 
Assumption 

Remarks on Suggested Design 
Assumption 

Skin Friction 
Factor, Ks 

Clay 3.0 3.97 32% 3.0 Most of the previous findings 
suggested value of 2.5 

Silt 2.5 7.04 181% 2.5 Aligned with Meyerhof (1976), Gue 
(2007), Tan et al. (2009) 

Sand 2.0 NA NA 2.0 Aligned with Meyerhof (1976), Gue 
(2007) 

End Bearing 
Factor, Kb 

Clay 200 116.48 -42% 100 Aligned with Decourt (1995) 
Silt 300 605.11 102% 200 Aligned with Decourt (1995) 

Sand 400 281.37 -30% 250 Aligned with Gue (2007), Tan et al. 
(2009) 

 
In addition, the machine learning and statistical model are adopted to 
predict skin friction factor and end bearing factor as shown in Table 4. 

Table 5 and 6 shows performance metrics of machine learning and 
statistical model on prediction of Ks and Kb. 
 

 
Table 4: Skin Friction and End Bearing Factor Prediction using Machine Learning and Statistical Model 

 
Factor Soil Design 

Assumption 
Mean Value Based on Back 

Calculation of Pile Load 
Test 

SVM Mean 
Value 

KNN Mean 
Value 

DT Mean 
Value 

RF Mean 
Value 

ANCOVA 
Mean Value 

Skin Friction 
Factor, Ks 

Clay 3.0 3.97 4.06 4.82 4.25 4.12 4.10 
Silt 2.5 7.04 7.42 8.17 7.24 7.24 7.30 

Sand 2.0 NA NA NA NA NA NA 
End Bearing 

Factor, Kb 
Clay 200 116.48 116.25 154.94 125.02 137.35 152.15 
Silt 300 605.11 417.94 479.69 542.46 521.30 496.21 

Sand 400 281.37 244.32 210.82 242.03 282.16 277.73 
 

Table 5: Machine Learning and Statistical Models Performance Metrics on Prediction of Skin Friction Factor 
 

Performance Metrics SVM KNN DT RF ANCOVA 
MAE 1.151 1.407 1.191 1.208 1.185 
MSE 2.452 3.635 2.524 2.535 2.515 
R² 0.517 0.284 0.503 0.501 0.505 
MAPE 22.19% 29.79% 22.48% 22.41% 22.37% 

 
 

Table 6: Machine Learning and Statistical Models Performance Metrics on Prediction of End Bearing Factor 
 

Performance Metrics SVM KNN DT RF ANCOVA 
MAE 294.822 286.577 273.398 253.609 278.467 
MSE 192402.562 178086.356 162408.256 151718.245 164092.596 
R² 0.067 0.136 0.213 0.264 0.204 
MAPE 64.37% 68.84% 81.27% 59.17% 83.41% 
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From Table 5, SVM illustrates the best fit model for predicting 
skin friction factor with R2 of 0.517. Meanwhile, other machine 
learning model such as DT and RF and statistical model appear 
to have very close, yet lower R2 compare to SVM. From Table 6, 
RF seems to be the best fit model for predicting end bearing 
factor with R2 of 0.264. DT and ANCOVA have R2 close to RF but 
the SVM and KNN demonstrated lower R2 compare to other 
models. It is also notable to mention that R2 generally is about 
0.5 or less than 0.5 which implies only 50% or less that the 
models built are able to predict Ks and Kb value. Thus the 
machine learning have advantages in the capability of 
predicting the Ks and Kb in a range of value (continuous data), 
instead of discrete value found in most of the literature. This 
lends support to more comprehensive and meaningful 
prediction in future whereby limited soil investigation data and 
pile load test report are available. 
 
3.3    Machine Learning Model for Pile Axial Geotechnical 
Capacity 

 
Third objective of this study is to train, validate and test four (4) 
machine learning models for prediction of pile geotechnical 
axial capacity. The data consists of information from six (6) 
project sites. The dataset is partitioned and divided into 80% 
for training and validation, whereas 20% for testing.  
 
The hyperparameter of each machine learning is listed as 
below: 

1) Support Vector Machine 
C = 1 
Tolerance = 0.001 
Epsilon = 0.1 
Pre-processing = Standardisation 
Cross-validation = 10 folds 
Kernel = Radial Basis Function (RBF) 
Gamma = 0.5 

 
2) K-Nearest Neighbours 

Model = Metric 
Distance = Euclidean Distance 
Number of Neighbours = √351=19 
Cross-validation = 10 folds 

 
3) Decision Trees 

Method = Chi-Squared Measurement (CHAID) 
Tree Parameters (minimum parent size, minimum son 
size, maximum depth) = Automatic 
CP = 0.0001 
Bonferroni Correction – Number of Intervals = 10 
Bonferroni Correction – Significance Level = 5% 
Validation = 35 nos (10% of 351) chosen randomly 
from training set 

 
4) Random Forest 

Sampling = Random with replacement 
Method = Bagging 
Sample size = 316 
Number of trees = 100 

Stop conditions – Construction time = 300 
Tree parameters – Minimum node size = 2 
Tree parameters – Minimum son size = 1 
Tree parameters – Maximum depth = 20 
CP = 0.0001 

 
Generally, the smaller the error i.e. MAE, MAPE, MSE, RMSE, 
MSLE, RMSLE, the better is the machine learning model 
performance. R2, an indicator with a range of 0 to 1. It is 
equivalent to the model's determination coefficient and is 
understood as the percentage of the response variable's 
variability that the model is responsible for explaining. The 
model performs better the closer R2 is to 1. The more closely a 
model matches the data, the closer the residuals are to 0. 
Following Table 7 shows the model performance indicator for 4 
machine learning models. 
 
Table 7: Machine Learning Model Performance Indicator for Predicting 
Pile Axial Geotechnical Capacity 
 MSE R2 MAE 
Support Vector 
Machine 

55,824.957 0.956 183.976 

K-Nearest 
Neighbours 

103,575.971 0.919 219.599 

Decision Trees 52,508.261 0.959 181.957 
Random Forest 49,203.432 0.962 172.887 
 
From the Table 7, Random Forest is found to be the best 
prediction model as it has the least error and highest R-Squared 
(49,203.432, 0.962), followed by Decision Trees, Support Vector 
Machine and K-Nearest Neighbours. 
 
Figures 3 to 6 shows the graph of Actual Total Resistance versus 
Predicted Total Resistance for all four machine learning models. 
 
Comparison of predictions and observed values is possible 
using a response variable versus predictions graphic. The points 
will be nearer to the regression line the more variance is 
explained by the model. Response variable versus Standardized 
residuals chart induce following findings: 

1) A larger variability of errors on the model using K-
Nearest Neighbours compare to predictions made by 
Support Vector Machine, Decision Trees and Random 
Forest model. 

2) Good performance (small residuals) of the Random 
Forest model on the bigger pile capacity value and 
poorer performance for the smaller pile capacity 
value 

3) Generally, the observations concentrated on top right 
and bottom left of the chart for all models. 
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Figure 3: Actual Total Resistance vs Predicted Total Resistance for Support Vector Machine 
 

 
Figure 4: Actual Total Resistance vs Predicted Total Resistance for K-Nearest Neighbours 

 

 
Figure 5: Actual Total Resistance vs Predicted Total Resistance for Decision Trees 
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Figure 6: Actual Total Resistance vs Predicted Total Resistance for Random Forest 

 
 
3.4    Statistical Model Prediction for Pile Axial 
Geotechnical Capacity 

 
The fourth objective is to develop statistical model prediction 
equation for pile geotechnical axial capacity. Table 8 shows the 
model performance indicator for statistical model prediction 
equation. It shows the accuracy and reliability of the statistical 
model prediction equation. 
 
 

Table 8: Model Performance Indicator for Statistical Model Prediction 
Equation 
Statistics Training Set Validation Set Testing Set 
MSE 94616.318 47177.079 62389.249 
R2 0.943 0.977 0.951 
MAPE 15.309 9.858 15.65 
 
Figure 7 shows the graph of Actual Total Resistance versus 
Predicted Total Resistance for statistical model. 
 

 
Figure 7: Actual Total Resistance vs Predicted Total Resistance for statistical model 

 
Table 9: Type I Sum of Square table 

Source DF Sum of squares Mean squares F Pr > F 
p-values signification 
codes 

Pile Depth 1.000 393611582.273 393611582.273 4160.081 <0.0001 *** 

Pile Shaft Area 1.000 64394296.254 64394296.254 680.583 <0.0001 *** 

Pile Base Area 1.000 484984.405 484984.405 5.126 0.024 * 
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Pile Shape 1.000 2309903.555 2309903.555 24.413 <0.0001 *** 

Average Shaft SPT-N (Nav) 1.000 1937555.120 1937555.120 20.478 <0.0001 *** 

Base SPT-N (Nb) 1.000 47945.941 47945.941 0.507 0.477 ° 

Soil Along Pile Shaft 1.000 15499468.917 15499468.917 163.814 <0.0001 *** 

Soil At Pile Base 1.000 1069782.752 1069782.752 11.307 0.001 *** 

Signification codes: 0 < *** < 0.001 < ** < 0.01 < * < 0.05 < . < 0.1 < ° < 1    
 

Table 10: Type III Sum of Square table 

Source DF Sum of squares Mean squares F Pr > F 
p-values 
signification 
codes 

Pile Depth 1.000 52913.390 52913.390 0.559 0.455 *** 

Pile Shaft Area 1.000 58724.127 58724.127 0.621 0.431 *** 

Pile Base Area 1.000 1143034.851 1143034.851 12.081 0.001 * 

Pile Shape 1.000 1687601.808 1687601.808 17.836 <0.0001 *** 
Average Shaft SPT-N 
(Nav) 1.000 385160.433 385160.433 4.071 0.045 *** 

Base SPT-N (Nb) 1.000 41297.232 41297.232 0.436 0.509 ° 

Soil Along Pile Shaft 1.000 3109108.364 3109108.364 32.860 <0.0001 *** 

Soil At Pile Base 1.000 1069782.752 1069782.752 11.307 0.001 *** 

Signification codes: 0 < *** < 0.001 < ** < 0.01 < * < 0.05 < . < 0.1 < ° < 1    
 
 
From Table 9 (Type I Sum of Square table) and Table 10 (Type III 
Sum of Square table), the lower the F probability corresponding 
to a given variable, the stronger the impact of the variable on 
the model as it is before the variable is added to it. From the 
results, SPT-N at pile base brings the least information to the 
model. The following variables bring significant information to 
explain the variability of the dependent variable Total 
Resistance (Qt): Pile Base Area, Pile Shape, Average Shaft SPT-N 
(Nav), Soil Along Pile Shaft and Soil at Pile Base. From the table 
of model parameter, the higher the p-value, the weaker impact 
of the parameter on the model. From the results, SPT-N at pile 
base gives least impact to the model. Generally, where pile is 
installed at clay soil, most of the contribution of pile bearing 
capacity comes from skin friction. End bearing of pile did 
provide some capacity but is lesser compare to skin friction. 
Thus, the SPT-N at base (Nb) does not bring significant impact 
on pile geotechnical axial capacity, identical to the results from 
ANCOVA. Among the explanatory variables, based on the Type 
III sum of squares, variable Soil Along Pile Shaft is the most 
influential. This is in agreement of different type of soil resulted 
in different bearing capacity of pile. This also in line with the 
design of friction pile at soft clay area as skin friction contribute 
majority of the pile geotechnical axial capacity. 
 
The equation of the model is shown in Eq.8: 
 
Total Resistance (Qt)  
= 2990.39523274356 - 26.1675743180599*Pile Depth  

+ 20.0768144662322*Pile Shaft Area  
+ 20719.2449341038*Pile Base Area 
 - 1123.37776845147*Pile Shape  
+ 60.4988187721365*Average Shaft SPT-N (Nav)  
+ 4.70421602126417*Base SPT-N (Nb)  
- 732.904175636292*Soil Along Pile Shaft  
- 209.510814409674*Soil At Pile Base 
      (8) 

 
Where; 
Pile Shape – Square = 1 
Pile Shape – Circular = 2 
Soil Along Pile Shaft – Sand = 1 
Soil Along Pile Shaft – Silt = 2 
Soil Along Pile Shaft – Clay = 3 
Soil at Pile Base – Sand = 1 
Soil at Pile Base – Silt = 2 
Soil at Pile Base – Clay = 3 

 
3.5    Comparison Between Empirical Method, Machine 
Learning Model and Statistical Model for Pile Axial 
Geotechnical Capacity 
 
The fifth objective is to compare results between empirical 
method, machine learning models and statistical model. Table 
12 shows the testing set performance metrics of each 
empirical, machine learning and statistical model. 
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Table 11: Performance Metrics of Empirical Method, Machine Learning Model and Statistical Model for Pile Axial Geotechnical Capacity 

 
Performance Metrics Modified Meyerhof SVM KNN DT RF ANCOVA 

MAE 1031.309 183.976 219.599 181.957 172.887 182.748 
MSE 1651282.733 55824.957 103575.971 52508.261 48203.432 62389.249 
R² -0.293 0.956 0.919 0.959 0.962 0.951 

MAPE 72.49% 15.88% 18.27% 15.31% 14.61% 15.65% 
 
 
From Table 11, Random Forest is the best model to predict 
geotechnical pile axial capacity compare to other models as it 
explains 96.2% of the variability of pile capacity, followed by 
Support Vector Machine, Decision Trees, ANCOVA, K-Nearest 
Neighbours and empirical Modified Meyerhof method. 
Negative R2 value of Modified Meyerhof indicates that the 

underestimation of pile capacity compares to actual pile 
capacity obtained from field. 
Figure 8 shows the graph of Actual Total Resistance vs 
Predicted Total Resistance for empirical method (modified 
Meyerhof). 
 
 

 
Figure 8: Actual Total Resistance vs Predicted Total Resistance for empirical method (modified Meyerhof) 

 
 
4.0    CONCLUSION 
 
Total of six projects at Batu Kawan and Nibong Tebal located in 
Penang state contributed 439 numbers of data to this study. 
The data are chosen based on location of similar geological 
formation, mainly consists of unconsolidated alluvial deposits. 
The calculated pile capacity / actual pile capacity had a wide 
scatter range of 5.76% to 94.96%. All 439 numbers of pile 
tested actual capacity is more than capacity calculated via 
empirical method. This shows that empirical method predicts 
pile capacity conservatively with wide range of values. These 
findings signify the importance to reduce gaps in pile capacity 
prediction via calibration of empirical design value, machine 
learning and statistical models. For machine learning, 
prediction shall be generated based on best fit model. 

Ks and Kb were back calculated from dynamic pile 
load test results and further calibrated. Generally, there is no 
changes suggested for design value of skin friction factor, with 
Ks of 2.5 and 2 for silt and sand respectively as they are quite 
consistent with findings of Meyerhof (1976), Gue (2007) and 
Tan et al. (2009). However, it is worth to mention that most of 
the previous findings proposed Ks value of 2.5 for skin friction 
factor of clay. Whereas the end bearing factor Kb for sand, silt 
and clay, the results attest to corroborate with Decourt (1995), 

Gue (2007) and Tan et al. (2009) with downgraded value of 
250, 200 and 100 respectively. 

Though Ks and Kb value have been calibrated as 
shown in above table, it only makes the pile capacity prediction 
more conservative and challenging as the current Modified 
Meyerhof empirical method predicted a scatter wide range of 
pile capacity compare to load test result, i.e. from 5.76% to 
94.96%. Neither downgrade nor upgrade of skin friction factor 
and end bearing factor will help in minimise the wide gap of 
predicted pile capacity because empirical method (SPT-N 
based) over simplifies the science and theory of pile design. 

Next, the data is partitioned into 80% (351 numbers) 
for training and validation while 20% (88 numbers) for testing. 
Four machine learning models, i,e, Support Vector Machine, K-
Nearest neighbours, Decision Trees and Random Forest are 
chosen.  

From statistical modelling, SPT-N at pile base brings 
the least information to the model while Pile Base Area, Pile 
Shape, Average Shaft SPT-N (Nav), Soil Along Pile Shaft and Soil 
at Pile Base bring significant implication to pile capacity. 

From the comparison of testing set performance 
metrics of each empirical, machine learning and statistical 
models, Random Forest machine learning method is the best 
model to predict geotechnical pile axial capacity. Random 
Forest explains 96.2% of the variability of pile capacity, 
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followed by Support Vector Machine, Decision Trees, ANCOVA, 
K-Nearest Neighbours and empirical Modified Meyerhof 
method. Negative R2 value of Modified Meyerhof indicates 
that the underestimation of pile capacity compares to actual 
pile capacity obtained from field. Most of the machine learning 
model predicts better than statistical method except K-Nearest 
Neighbours. Empirical method performs poorest amongst all 
pile capacity prediction models. 

Machine learning model possess advantages compare 
to empirical method. Machine learning model is capable of 
solving non-linear problem, in the other hand, empirical 
method usually formulates and solves problem in linear 
relationship. Furthermore, machine learning model also display 
pros over analytical and theoretical method. Though analytical 
and theoretical method is able to define non-linear relationship 
between pile capacity and variable parameters, the soil and its 
properties remain vastly heterogenous at field. Analytical and 
theoretical method might be able to predict pile capacity 
accurately based on parameters that are well defined and 
tested properly in laboratory. However, it would be almost 
impossible to identify the complete range of soil properties 
over a site especially when the project is in big scale. There is 
possibility of different actual pile capacity though given similar 
pile penetration depth, SPT-N, pile size and pile shape due to 
heterogenous soil properties within a project site. Machine 
learning method can assist to predict pile capacity based on 
locality. 
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