EFFECT OF ULTRASONIC VIBRATION ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF ADC12 ALUMINUM ALLOY BY PERMANENT MOLD CASTING
DOI:
https://doi.org/10.11113/aej.v12.17834Keywords:
Ultrasonic vibration, aluminum casting, permanent mold casting, grain refinement, ADC12Abstract
In this study, the effect of ultrasonic vibration on mold filling ability, microstructure, and mechanical properties of the aluminum alloy during solidification is investigated. Microstructure and mechanical properties were compared with casting without ultrasonic. Grain refinement and an increase in mechanical properties were obtained due to the ultrasonic vibration. The material used for the research was ADC12 aluminum alloy, and the frequency of ultrasonic vibration was 20 kHz. The casting was carried out in SKD11 steel molds. It was found that the ultrasonic mold vibrated casting has less porosity , fine grain and improvement in mechanical properties as compared to the casting without ultrasonic mold vibration. Where the tensile strength increased by about the tensile strength increased by 20% at 660oC and 9% at 700oC while the hardness changed insignificantly.
References
Khalifa, W., Tsunekawa, Y., & Okumiya, M. 2008. Effect of ultrasonic melt treatment on microstructure of A356 aluminium cast alloys. International Journal of Cast Metals Research, 21(1-4): 129-134. DOI: https://doi.org/10.1179/136404608X361819
Ferguson, J. B., Schultz, B. F., Cho, K., & Rohatgi, P. K. 2014. Correlation vs. causation: The effects of ultrasonic melt treatment on cast metal grain size. Metals, 4(4): 477-489. DOI: https://doi.org/10.3390/met4040477
Eskin, G. I., & Eskin, D. G. 2014. Ultrasonic Treatment of Light Alloy Melts. DOI: https://doi.org/10.1201/b17270.
Abramov, V. O., Abramov, O. V., Straumal, B. B., & Gust, W. 1997. Hypereutectic Al-Si based alloys with a thixotropic microstructure produced by ultrasonic treatment. Materials & Design, 18(4-6): 323-326. DOI: https://doi.org/10.1016/S0261-3069(97)00072-1
Eskin, G. I. 1995. Cavitation mechanism of ultrasonic melt degassing. Ultrasonics Sonochemistry, 2(2): S137-S141. DOI: https://doi.org/10.1016/1350-4177(95)00020-7.
Xu, H., Jian, X., Meek, T. T., & Han, Q. 2004. Degassing of molten aluminum A356 alloy using ultrasonic vibration. Materials letters, 58(29): 3669-3673. DOI: https://doi.org/10.1016/j.matlet.2004.02.055
Jian, X., Meek, T. T., & Han, Q. 2006. Refinement of eutectic silicon phase of aluminum A356 alloy using high-intensity ultrasonic vibration. Scripta Materialia, 54(5): 893-896. DOI: https://doi.org/10.1016/j.scriptamat.2005.11.004
Puga, H., Costa, S., Barbosa, J., Ribeiro, S., & Prokic, M. 2011. Influence of ultrasonic melt treatment on microstructure and mechanical properties of AlSi9Cu3 alloy. Journal of Materials Processing Technology, 211(11): 1729-1735. DOI: https://doi.org/10.1016/j.jmatprotec.2011.05.012
Feng, H. K., Yu, S. R., Li, Y. L., & Gong, L. Y. (2008). Effect of ultrasonic treatment on microstructures of hypereutectic Al-Si alloy. Journal of materials processing technology, 208(1-3), 330-335. DOI: https://doi.org/10.1016/j.jmatprotec.2007.12.121
Abu-Dheir, N., Khraisheh, M., Saito, K., & Male, A. 2005. Silicon morphology modification in the eutectic Al-Si alloy using mechanical mold vibration. Materials Science and Engineering: A, 393(1-2): 109-117. DOI: https://doi.org/10.1016/j.msea.2004.09.038
Han, Y., Li, K., Wang, J., Shu, D., & Sun, B. 2005. Influence of high-intensity ultrasound on grain refining performance of Al-5Ti-1B master alloy on aluminium. Materials Science and Engineering: A, 405(1-2): 306-312. DOI: https://doi.org/10.1016/j.msea.2005.06.024
Puga, H., Barbosa, J., Teixeira, J. C., & Prokic, M. 2014. A new approach to ultrasonic degassing to improve the mechanical properties of aluminum alloys. Journal of materials engineering and performance, 23(10): 3736-3744. DOI: https://doi.org/10.1007/s11665-014-1133-2
Meidani, A. N., & Hasan, M. 2004. A study of hydrogen bubble growth during ultrasonic degassing of Al-Cu alloy melts. Journal of Materials Processing Technology, 147(3), 311-320. DOI: https://doi.org/10.1016/j.jmatprotec.2003.11.012
Xu, H., Han, Q., & Meek, T. T. 2008. Effects of ultrasonic vibration on degassing of aluminum alloys. Materials Science and Engineering: A, 473(1-2): 96-104. DOI: https://doi.org/10.1016/j.msea.2007.04.040
Tsunekawa, Y., Suzuki, H., & Genma, Y. 2001. Application of ultrasonic vibration to in situ MMC process by electromagnetic melt stirring. Materials & Design, 22(6): 467-472. DOI: https://doi.org/10.1016/S0261-3069(00)00079-0
Eskin, D. G. 2015. Ultrasonic melt processing: Achievements and challenges. In Materials Science Forum 828: 112-118. Trans Tech Publications Ltd. DOI: https://doi.org/10.4028/www.scientific.net/MSF.828-829.112
Eskin, D. G. 2017. Ultrasonic processing of molten and solidifying aluminium alloys: overview and outlook. Materials Science and Technology, 33(6): 636-645. DOI: https://doi.org/10.1080/02670836.2016.1162415
Eskin, G. I. 2002. Effect of ultrasonic (cavitation) treatment of the melt on the microstructure evolution during solidification of aluminum alloy ingots. International Journal of Materials Research, 93(6): 502-507 DOI: https://doi.org/10.3139/146.020502
Puga, H., Barbosa, J., Seabra, E., Ribeiro, S., & Prokic, M. 2009. The influence of processing parameters on the ultrasonic degassing of molten AlSi9Cu3 aluminium alloy. Materials Letters, 63(9-10): 806-808. DOI: https://doi.org/10.1016/j.matlet.2009.01.009
Puga, H., Barbosa, J., Tuan, N. Q., & Silva, F. 2014. Effect of ultrasonic degassing on performance of Al-based components. Transactions of Nonferrous Metals Society of China, 24(11): 3459-3464. DOI: https://doi.org/10.1016/S1003-6326(14)63489-0