NON-INVASIVE GRADING TECHNIQUE FOR RUBY GEMSTONE USING CHARGE-COUPLED DEVICE (CCD)

Authors

  • Fatinah Mohd Rahalim Faculty of Engineering and Built Environment, Universiti Sains Islam Malaysia, 71800 Bandar Baru Nilai, Negeri Sembilan, Malaysia
  • Juliza Jamaludin Faculty of Engineering and Built Environment, Universiti Sains Islam Malaysia, 71800 Bandar Baru Nilai, Negeri Sembilan, Malaysia
  • Syarfa Najihah Raisin Faculty of Engineering and Built Environment, Universiti Sains Islam Malaysia, 71800 Bandar Baru Nilai, Negeri Sembilan, Malaysia

DOI:

https://doi.org/10.11113/aej.v13.18267

Keywords:

Ruby, Non-invasive, Clarity, Light intensity, Charge-Coupled Device

Abstract

Ruby is one of the most popular and high-value gemstones that always attract the gemologist and jeweler in the diamond market. The wide use of ruby in various industries makes the grading of this gems more complicated due to a lot of synthetic and imitation rubies are made. The current grading techniques are mostly depending on the human visual assessment which prone to errors. This paper proposes a system that helps in grading the clarity characteristic of the ruby in non-invasive manner. The system includes a charge-coupled devices (CCD) and laser that is designed in the most suitable and effective way to conduct inspection on the light intensity of the ruby which will then determine the clarity of the ruby. CCD linear sensor is widely known as the reliable sensor especially when use in the optical system. The CCD linear sensor capture the light intensity from the ruby and convert it into the voltage value. The result shows a value of 1.7918 V obtained from the CCD linear sensor when ruby is placed in the system. This concludes that the CCD system can detect even slightest changes in the light intensity that can pass through the ruby and falls on the CCD linear sensor. The system is proven to be a reliable and effective system with 80% accuracy.

References

Malsy, A. and Klemm, L. 2010. Distinction of Gem Spinels from the Himalayan Mountain Belt. Chimia. 64(10): 741-746. DOI: https://doi.org/10.2533/chimia.2010.741

Joseph, D., Lal, M., Shinde, P.S. and Padalia, B.D. 2000. Characterization of Gem Stones (Rubies and Sapphires) by Energy‐Dispersive X‐Ray Fluorescence Spectrometry. X-Ray Spectrometry. 29(2): 147-150. DOI: https://doi.org/10.1002/(SICI)1097-4539(200003/04)29:2<147: AID-XRS370>3.0.CO;2-K

Liu, F., Goodman, B.A., Tan, X., Wang, X., Chen, D. and Deng, W. 2019. Luminescence and EPR Properties of High Quality Ruby Crystals Prepared by the Optical Floating Zone Method. Optical Materials. 91: 183-188. DOI: https://doi.org/10.1016/j.optmat.2019.03.018

Giuliani, G., Groat, L.A., Fallick, A.E., Pignatelli, I. and Pardieu, V. 2020. Ruby Deposits: A Review and Geological Classification. Minerals. 10(7): 597. DOI: https://doi.org/10.3390/min10070597

Brazeal, B. 2019. Central Asian Crypto-Jews in the Global Emerald Economy. The Extractive Industries and Society. 6(4): 1047-1054. DOI: https://doi.org/10.1016/j.exis.2019.03.014

Karampelas, S., Kiefert, L., Bersani, D. and Vandenabeele, P. 2020. Gems and Gemmology. DOI: https://doi.org/10.1007/978-3-030-35449-7

Gemology Tools Professional, Retrieved from https://gemologytools.com/

Sahoo, R.K., Singh, S.K. and Mishra, B.K. 2016. Surface and Bulk 3D Analysis of Natural and Processed Ruby Using Electron Probe Micro Analyzer and X-Ray Micro CT Scan. Journal of Electron Spectroscopy and Related Phenomena. 211: 55-63. DOI: https://doi.org/10.1016/j.elspec.2016.06.004

Raisin, S.N., Jamaludin, J., Ismail, I., Balakrishnan, S.R., Sahrim, M., Naeem, B., Mohamad, F.A.J., Zain, A.S.M. and Fauzi, A.S.M. 2020. A Study of Object Transparency Via Charge-Coupled Device Mathematical Modelling Assessment. Malaysian Journal of Science Health & Technology. 7. DOI: https://doi.org/10.33102/mjosht.v7i.115

Mukherjee, S. 2011. Applied Mineralogy: Applications in Industry and Environment. DOI: https://doi.org/10.1007/978-94-007-1162-4

Liao, K.W., Lu, K.J., Luo, R.C. and Yeh, J.A. 2016. Portable Dielectric Tunable Forensic Lens Design for Jadeite Analysis. 2016 International Conference on Optical MEMS and Nanophotonics (OMN). DOI: https://doi.org/10.1109/OMN.2016.7565889

Mehta, S., Patel, A. and Mehta, J. 2015. CCD or CMOS Image Sensor for Photography. 2015 International Conference on Communications and Signal Processing (ICCSP). DOI: https://doi.org/10.1109/ICCSP.2015.7322890

Luo, B., Huo, J., Chen, Y., Li, B. and Luo, J. 2018. XCR4C: A Rad-Hard Full-Function CDS ASIC for X-Ray CCD Applications. 2018 IEEE Nuclear Science Symposium and Medical Imaging Conference Proceedings (NSS/MIC). DOI: https://doi.org/10.1109/NSSMIC.2018.8824616

Ahline, N. 2020. Staurolite in a Mozambique Ruby. Gems & Gemology. 56(3): 434-435.

Jamaludin, J., Rahim, R.A., Rahiman, M.H.F. and Rohani, J.M. 2019. CCD Optical Tomography System to Detect Solid Contamination in Crystal-Clear Water. IEEE Transactions on Industrial Electronics. 67(4): 3248-3256. DOI: https://doi.org/10.1109/TIE.2019.2908589

Jamaludin, J., Rahim, R.A., Rahim, H.A., Rahiman, M.H.F., Muji, S.Z.M. and Rohani, J.M. 2016. Charge Coupled Device Based on Optical Tomography System in Detecting Air Bubbles in Crystal Clear Water. Flow Measurement and Instrumentation. 50: 13-25. DOI: https://doi.org/10.1016/j.flowmeasinst.2016.06.001

Rahalim, F.M., Jamaludin, J., Raisin, S.N., Ismail, I., Wahab, Y.A., Rahim, R.A., Balakrishnan, S.R., Ismail, W.Z.W., Mohamad, F.A.J. and Zaini, N.A.H.S. 2021. Analysis on Clarity of Rubies Gemstones Using Charge-Coupled Device (CCD). Journal of Tomography System & Sensors Application. 4(1): 80-84. DOI: https://oarep.usim.edu.my/jspui/handle/123456789/13330

Jamaludin, J., Rahim, R.A., Rahiman, M.H.F., Wahab, Y.A., Rohani, J.M., Sahrim, M., Ismail, W.Z.W., Ismail, I. and Balakrishnan, S.R. 2018. Optical Tomography System Using Charge-Coupled Device for Transparent Object Detection. International Journal of Integrated Engineering. 10(4): 105-108. DOI: https://doi.org/10.30880/ijie.2018.10.04.017

Jamaludin, J., Rahim, R.A., Rahim, H.A., Rahiman, M.H.F., Muji, S.Z.M., Jumaah, M.F., Fadzil, N.S.M., Ahmad, N., Sahlan, S., Ahmad, A., Yunus, Y. and Abas, K.H. 2015. Analysis on the Performance of LED and Laser Diode with Charge Coupled Device (CCD) Linear Sensor Measuring Diameter of Object. Jurnal Teknologi. 77(17). DOI: https://doi.org/10.11113/jt.v77.6418

Durmuş, H.O., Kocaata, S., Naz, G., Çelik, Y.E., Çetin, E., Karaböce, B. and Seyidov, M.Y. 2004. Investigation of Basic Optical Properties of Tissue Phantoms under 635 nm Low-Level Laser Irradiation. 2020 IEEE International Symposium on Medical Measurements and Applications (MeMeA). DOI: https://doi.org/10.1109/MeMeA49120.2020.9137206

Idroas, M. 2004. A Charge Coupled Device Based Optical Tomographic Instrumentation System for Particle Sizing.

Chapin, M., Pardieu, V. and Lucas, A. 2015. Mozambique: A Ruby Discovery for the 21st Century. Gems & Gemology. 51(1): 44-54. DOI: https://doi.org/10.5741/GEMS.51.1.44

Jamaludin, J., Rahim, R.A., Rahim, H.A., Rahiman, M.H.F., Rohani, J.M. and Muji, S.Z.M. 2017. Charge-Coupled Device Based on Optical Tomography System in Detecting Solid and Transparent Objects in Non-Flowing Crystal Clear Water. Optik. 131: 813-825. DOI: https://doi.org/10.1016/j.ijleo.2016.11.196

Downloads

Published

2023-02-28

Issue

Section

Articles

How to Cite

NON-INVASIVE GRADING TECHNIQUE FOR RUBY GEMSTONE USING CHARGE-COUPLED DEVICE (CCD) . (2023). ASEAN Engineering Journal, 13(1), 69-74. https://doi.org/10.11113/aej.v13.18267