SYNTHESIS AND CHARACTERIZATION OF BIMETALLIC MOF HKUST-1(Cu, Mg) ADSORBENTS AND THEIR APPLICATION IN NATURAL GAS PURIFICATION
DOI:
https://doi.org/10.11113/aej.v14.21409Keywords:
Bimetallic metal-organic framework, CO2 adsorption, CO2/CH4 selectivity, Natural gas.Abstract
Carbon dioxide (CO2) is one of the most important greenhouse gases and its removal from natural gas by adsorption is highly desirable. This study investigates the synthesis process of the bimetallic metal-organic framework, HKUST-1(Cu, Mg) and its potential use in natural gas purification by preferentially adsorbing CO2 from CO2/CH4 mixture. HKUST-1(Cu, Mg) was prepared by solvothermal method at different temperatures (100-200 °C). The resulting MOFs were characterized by various analytical techniques (XRD, SEM, FTIR, and TGA). The experimental results showed that single metal MOF HKUST-1 can be prepared at 100 °C, whereas the bimetallic HKUST-1(Cu, Mg) can be prepared by raising the temperature to 180 °C. Furthermore, the synthesized single and bimetallic MOFs were studied for their CO2/CH4 separation performance. The sorption results showed that the partial substitution of Cu metal with Mg metal in the framework of bimetallic HKUST-1(Cu, Mg) enhanced the CO2 uptake and its selectivity over CH4 by 31.7%, and 38.60%, respectively, which can be attributed to changes in surface areas, pore structures and additional open metal site (OMS) induced by the secondary metal. These findings shed light on the optimal synthesis conditions and highlight the CO2 separation efficiency of HKUST-1(Cu, Mg) in natural gas upgrading.
References
Chong ZR, Yang SHB, Babu P, Linga P, Li X-S. 2016. Review of natural gas hydrates as an energy resource: Prospects and challenges. Applied Energy.162:1633-52.
Iarikov DD, Oyama ST. 2011. Review of CO2/CH4 separation membranes. Membrane science and technology. 14: 91-115. Elsevier.
Ullah A, Shah MUH, Ahmed J, Younas M, Othman MHD. 2022 Ionic Liquids and Metal-Organic Frameworks as Advanced Environmental Materials for CO2 Capture. Handbook of Energy Materials. 1-29. Springer.
Shen J, Wang X, Chen Y. 2023. Adsorbents for adsorption separation of CO2 and CH4: A literature review. The Canadian Journal of Chemical Engineering.101(12): 7115-33.
Riboldi L, Bolland O. 2016. Pressure swing adsorption for coproduction of power and ultrapure H2 in an IGCC plant with CO2 capture. International Journal of Hydrogen Energy.41(25): 10646-60.
Abdeen FR, Mel M, Jami MS, Ihsan SI, Ismail AF. 2016. A review of chemical absorption of carbon dioxide for biogas upgrading. Chinese Journal of Chemical Engineering.24(6): 693-702.
Li S, Pyrzynski TJ, Klinghoffer NB, Tamale T, Zhong Y, Aderhold JL, et al. 2017. Scale-up of PEEK hollow fiber membrane contactor for post-combustion CO2 capture. Journal of Membrane Science.527: 92-101.
Dai Z, Ansaloni L, Deng L. 2016. Recent advances in multi-layer composite polymeric membranes for CO2 separation: A review. Green Energy & Environment.1(2): 102-28.
Bui M, Adjiman CS, Bardow A, Anthony EJ, Boston A, Brown S, et al. 2018. Carbon capture and storage (CCS): the way forward. Energy & Environmental Science.11(5): 1062-176.
Yang B, Liu Y, Li M. 2016. Separation of CO2–N2 using zeolite NaKA with high selectivity. Chinese Chemical Letters.27(6): 933-7.
Samuel O, Othman MHD, Kamaludin R, Dzinun H, Imtiaz A, Li T, et al. 2023. Photocatalytic degradation of recalcitrant aromatic hydrocarbon compounds in oilfield-produced water: A critical review. Journal of Cleaner Production. 137567.
Jannatabadi AA, Bastani D, Norouzbahari S, Ghadimi A. 2021. CO2 and CH4 diffusivities through synthesized ZIF-8 nanocrystals: An experimental and theoretical investigation. Microporous and Mesoporous Materials.324: 111292.
Qian Q, Asinger PA, Lee MJ, Han G, Mizrahi Rodriguez K, Lin S, et al. 2020. MOF-based membranes for gas separations. Chemical reviews.120(16): 8161-266.
Karra JR, Walton KS. 2008. Effect of open metal sites on adsorption of polar and nonpolar molecules in metal− organic framework Cu-BTC. Langmuir.24(16): 8620-6.
Wang T, Lin E, Peng Y-L, Chen Y, Cheng P, Zhang Z. 2020. Rational design and synthesis of ultramicroporous metal-organic frameworks for gas separation. Coordination Chemistry Reviews.423: 213485.
Ali SA, Khan AU, Mulk WU, Khan H, Nasir Shah S, Zahid A, et al. 2023. An Ongoing Futuristic Career of Metal–Organic Frameworks and Ionic Liquids, A Magical Gateway to Capture CO2; A Critical Review. Energy & Fuels.37(20): 15394-428.
Ullah S, Bustam MA, Al-Sehemi AG, Assiri MA, Kareem FAA, Mukhtar A, et al. 2020. Influence of post-synthetic graphene oxide (GO) functionalization on the selective CO2/CH4 adsorption behavior of MOF-200 at different temperatures; an experimental and adsorption isotherms study. Microporous and Mesoporous Materials.296: 110002.
Wang B, Huang H, Lv X-L, Xie Y, Li M, Li J-R. 2014. Tuning CO2 selective adsorption over N2 and CH4 in UiO-67 analogues through ligand functionalization. Inorganic chemistry.53(17): 9254-9.
Bloch ED, Britt D, Lee C, Doonan CJ, Uribe-Romo FJ, Furukawa H, et al. 2010. Metal insertion in a microporous metal− organic framework lined with 2, 2′-bipyridine. Journal of the American Chemical Society.132(41): 14382-4.
An J, Rosi NL. 2010. Tuning MOF CO2 adsorption properties via cation exchange. Journal of the American Chemical Society.132(16): 5578-9.
Nugent P, Belmabkhout Y, Burd SD, Cairns AJ, Luebke R, Forrest K, et al. 2013. Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation. Nature.495(7439): 80-4.
Koh HS, Rana MK, Hwang J, Siegel DJ. 2013. Thermodynamic screening of metal-substituted MOFs for carbon capture. Physical Chemistry Chemical Physics.15(13): 4573-81.
Yang X, Xu Q. 2017. Bimetallic metal–organic frameworks for gas storage and separation. Crystal Growth & Design.17(4): 1450-5.
Chen L, Wang H-F, Li C, Xu Q. 2020. Bimetallic metal–organic frameworks and their derivatives. Chemical science.11(21): 5369-403.
Cui P-P, Zhang X-D, Wang P, Zhao Y, Azam M, Al-Resayes SI, et al. 2017. Zinc (II) and copper (II) hybrid frameworks via metal-ion metathesis with enhanced gas uptake and photoluminescence properties. Inorganic Chemistry.56(22): 14157-63.
He X, Chen D-R, Wang W-N. 2020. Bimetallic metal-organic frameworks (MOFs) synthesized using the spray method for tunable CO2 adsorption. Chemical Engineering Journal.382:122825.
Zhang Y, Wibowo H, Zhong L, Horttanainen M, Wang Z, Yu C, et al. 2021. Cu-BTC-based composite adsorbents for selective adsorption of CO2 from syngas. Separation and Purification Technology.279: 119644.
Wang T, Li X, Dai W, Fang Y, Huang H. 2015. Enhanced adsorption of dibenzothiophene with zinc/copper-based metal–organic frameworks. Journal of Materials Chemistry A.3(42): 21044-50.
Gotthardt MA, Schoch R, Wolf S, Bauer M, Kleist W. 2015. Synthesis and characterization of bimetallic metal–organic framework Cu–Ru-BTC with HKUST-1 structure. Dalton Transactions.44(5): 2052-6.
Walton KS, Sholl DS. 2015. Predicting multicomponent adsorption: 50 years of the ideal adsorbed solution theory. AIChE Journal.61(9): 2757-62.
Bae Y-S, Farha OK, Spokoyny AM, Mirkin CA, Hupp JT, Snurr RQ. 2008. Carborane-based metal–organic frameworks as highly selective sorbents for CO 2 over methane. Chemical Communications. (35): 4135-7.
Ojeda-López R, Domínguez-Ortiz A, Felipe C, Cervantes-Uribe A, Pérez-Hermosillo IJ, Esparza-Schulz JM. 2021. Isosteric enthalpy behavior of CO2 adsorption on micro-mesoporous materials: carbon microfibers (CMFs), SBA-15, and amine-functionalized SBA-15. Journal of Composites Science.5(4): 102.
An L, Liu S, Wang L, Wu J, Wu Z, Ma C, et al. 2019. Novel nitrogen-doped porous carbons derived from graphene for effective CO2 capture. Industrial & Engineering Chemistry Research.58(8): 3349-58.
Amesimeku J, Zhao Y, Li K, Gu J. 2023. Rapid synthesis of hierarchical cerium-based metal organic frameworks for carbon dioxide adsorption and selectivity. Microporous and Mesoporous Materials. 112658.
Aarti A, Bhadauria S, Nanoti A, Dasgupta S, Divekar S, Gupta P, et al. 2016. [Cu3 (BTC) 2]-polyethyleneimine: an efficient MOF composite for effective CO2separation. RSC Advances.6(95): 93003-9.
Denning S, Majid AA, Lucero JM, Crawford JM, Carreon MA, Koh CA. 2020. Metal–organic framework HKUST-1 promotes methane hydrate formation for improved gas storage capacity. ACS Applied Materials & Interfaces.12(47):53510-8.
Lin K-S, Adhikari AK, Ku C-N, Chiang C-L, Kuo H. 2012. Synthesis and characterization of porous HKUST-1 metal organic frameworks for hydrogen storage. International Journal Of Hydrogen Energy. 37(18): 13865-71.
Allmond K, Stone J, Harp S, Mujibur K. 2017. Synthesis and electrospraying of nanoscale MOF (metal organic framework) for high-performance CO 2 adsorption membrane. Nanoscale research letters.12:1-12.
Vrtovec N, Mazaj M, Buscarino G, Terracina A, Agnello S, Arčon I, et al. 2020. Structural and CO2 Capture Properties of Ethylenediamine-Modified HKUST-1 Metal–Organic Framework. Crystal Growth & Design. 20(8): 5455-65.
Goyal N, Kim J, Othman MR. 2023. Pentaethylenehexamine modified microporous MOF-199 for improved carbon dioxide uptake and enhanced carbon dioxide-nitrogen selectivity. Microporous and Mesoporous Materials.354: 112531.
Sun X, Gu X, Xu W, Chen W-J, Xia Q, Pan X, et al. 2019. Novel hierarchical Fe (III)-doped Cu-MOFs with enhanced adsorption of benzene vapor. Frontiers In Chemistry.7: 652.
Yan X, Hu X, Komarneni S. 2014. Facile synthesis of mesoporous MOF/silica composites. RSC Advances. 4(101): 57501-4.
Ghanbari T, Abnisa F, Daud WMAW. 2020. A review on production of metal organic frameworks (MOF) for CO2 adsorption. Science of The Total Environment.707: 135090.
Bodkhe GA, Hedau BS, Deshmukh MA, Patil HK, Shirsat SM, Phase DM, et al. 2020. Detection of Pb (II): Au Nanoparticle Incorporated CuBTC MOFs. Frontiers in Chemistry.8: 803.
Bao Z, Yu L, Ren Q, Lu X, Deng S. 2011. Adsorption of CO2 and CH4 on a magnesium-based metal organic framework. Journal Of Colloid And Interface Science. 353(2): 549-56.
Salehi S, Anbia M. 2017. High CO2 adsorption capacity and CO2/CH4 selectivity by nanocomposites of MOF-199. Energy & Fuels.31(5): 5376-84.
Gan L, Andres-Garcia E, Mínguez Espallargas G, Planas JG. 2023. Adsorptive Separation of CO2 by a Hydrophobic Carborane-Based Metal–Organic Framework under Humid Conditions. ACS Applied Materials & Interfaces. 15(4): 5309-16.
Abid HR, Rada ZH, Li Y, Mohammed HA, Wang Y, Wang S, et al. 2020. Boosting CO 2 adsorption and selectivity in metal–organic frameworks of MIL-96 (Al) via second metal Ca coordination. RSC Advances. 10(14): 8130-9.
Zhang Y, Huang Y, Chen S, Shi L, Wang J, Yi Q, et al. 2023. In-situ construction of ionic ultramicroporous metal–organic frameworks for high-efficiency CO2/CH4 separation. Chemical Engineering Journal.471: 144580.
Nuhnen A, Janiak C. 2020. A practical guide to calculate the isosteric heat/enthalpy of adsorption via adsorption isotherms in metal–organic frameworks, MOFs. Dalton Transactions.49(30):10295-307.
Zhao X, Bu X, Nguyen ET, Zhai Q-G, Mao C, Feng P. 2016. Multivariable modular design of pore space partition. Journal of the American Chemical Society.138(46): 15102-5.
Guo T, Ma N, Pan Y, Bedane AH, Xiao H, Eić M, et al. 2018. Characteristics of CO2 adsorption on biochar derived from biomass pyrolysis in molten salt. The Canadian Journal of Chemical Engineering. 96(11): 2352-60.
Liang L, Liu C, Jiang F, Chen Q, Zhang L, Xue H, et al. 2017. Carbon dioxide capture and conversion by an acid-base resistant metal-organic framework. Nature communications.8(1): 1233.
Qazvini OT, Babarao R, Telfer SG. 2021. Selective capture of carbon dioxide from hydrocarbons using a metal-organic framework. Nature Communications.12(1): 197.
Zhou S, Wang H, Zhang P, Guo W. 2019. Investigation of the isosteric heat of adsorption for supercritical methane on shale under high pressure. Adsorption Science & Technology.37(7-8): 590-606.