POROSITY ANALYSIS OF WELL LOGGING ON CORE TO UNDERSTAND Sw AND RESERVOIR CHARACTERISTICS IN THE KUJUNG FORMATION OF WELL Y NORTH EAST JAVA
DOI:
https://doi.org/10.11113/aej.v15.22841Keywords:
effective porosity, reservoir, core data, water saturation, fluid.Abstract
Porosity is the ratio of the volume of porous rock to the total volume of rock multiplied by 100%. Reservoir rocks that have good porosity will affect the volume of oil and gas. The volume of oil, gas and water depends directly on porosity. The study was conducted in the North East Java Basin in the X field, Y well in the Kujung Formation. The objectives are: First, to determine the effective porosity value using porosity calculations with neutron, density, neutron-density models; Second, to determine the comparison of effective porosity values between the results of porosity calculations of neutron models, density models, neutron-density models with core data. The method used is the Well Logging method, using Interactive PetroPhysics software. The results of the calculation of effective porosity in the Kujung Formation from the three models obtained an average effective porosity value between 16.58%-19.95%. Calculation of effective porosity with neutron, density and neutron-density models compared to core data showed a correlation of more than 0.8 so that the calculation results were considered accurate, and could be used for reservoir characteristics and water saturation (Sw). In this area, the determination of porosity is in accordance with the neutron, density, neutron-density model.
References
Wyllie, M.R.J., Gregory, A.R., Gardner, G.H.F. 1958. An experimental investigation of factors affecting elastic wave velocities in porous media. Geophysics, 23(3): 459-493. DOI: https://doi.org/10.1190/1.1438493
Halauddin, Suhendra, & Isa, M. 2020. Lattice Gas Automata Applications to Estimate Effective Porosity and Permeability Barrier Model of the Triangle with a Height Variation. Journal Of Aceh Physics Society, 9(2): 48-54. DOI: https://doi.org/10.24815/jacps.v9i2.16056
Miller M.N., Paltiel, Z., Gillen, M.E., Granot, J., Bouton, J.C. 1990. Spin Echo Magnetic Resonance Logging: Porosity and Free Fluid index Determination. SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers. DOI: https://doi.org/10.2118/20561-MS
Ogolo, N. A., Akinboro, O. G., Inam, J. E., Akpokere, F. E., & Onyekonwu, M. O. 2015. Effect of Grain Size on Porosity Revisited [Conference Paper]. SPE-178296-MS. DOI: https://doi.org/10.2118/178296-MS
Surjono, S. S., & Arifianto, I. 2016. Petrophysics Analysis for Reservoir Characterization of Upper PloverFormation in the Field “A”, Bonaparte Basin, Offshore Timor, Maluku,Indonesia. Journal of Applied Geology, 1(1): 43-52. DOI: https://doi.org/http://dx.doi.org/10.22146/jag.26959
Cavero, J., Orellana, N. H., Yemez, Singh, V., & Izaguirre, E. 2016. Importance of conceptual geological models in 3D reservoir modelling. First Break, 34: 39-49. DOI: https://doi.org/10.3997/1365-2397.2016010
Indriyani, P. D., Harja, A., & Nainggolan, T. B. 2020. Petrophysical Analysis to Determine Reservoir and Source Rocks in Berau Basin, West Papua Waters. Bulletin of the Marine Geology, 35(1): 13-22. DOI: https://doi.org/http://dx.doi.org/10.32693/bomg.35.1.2020.659
Widarsono, B. 2010. Uji Coba Teknik Baru untuk Menentukan Parameter Pancung Porositas Pada Kasus Reservoir Batugamping. Lembaran Publikas Minyak Dan Gas Bumi, 44(1): 1-11. DOI: https://doi.org/10.29017/LPMGB.44.1.151
Wood, D. A. 2020. Predicting porosity, permeability and water saturation applying an optimized nearest-neighbour, machine-learning and data-mining network of well-log data. Journal of Petroleum Science and Engineering, 184: 1-17. DOI: https://doi.org/10.1016/j.petrol.2019.106587
Zainuri, A. P. P., Sinurat, P. D., Irawan, D., & Sasongko, H. 2023. Trap Prevention in Machine Learning in Prediction of Petrophysical Parameters: A Case Study in The Field X. Scientific Contributions Oil And Gas, 46(3): 115-127. DOI: DOI: https://doi.org/10.29017/SCOG.46.3.1586
Ezati, M., Olfati, H. O., Khadem, M., Yazdanipour, M. R., & Mohammad, A. 2019. Petrophysical Evaluation of a Severely Heterogeneous Carbonate Reservoir; Electrical Image Logs Usage in Porosity Estimation. Open Journal of Geology, 9(3): 193-200. DOI: https://doi.org/10.4236/ojg.2019.93013
Lucia, F.J. 1983. Petrophysical parameters estimated from visual descriptions of carbonate rocks: a field classification of carbonate pore space. Journal of Petroleum Technology. 35: 629-637. DOI: https://doi.org/10.2118/10073-PA
Saleh, S. K., & Mahasneh, M. A. 2015. Activation of Jordanian Ore Bentonite by Sodium Carbonates. Journal of Minerals and Materials Characterization and Engineering, 3(6): 477-487. DOI: https://doi.org/10.4236/jmmce.2015.36050
Widarsono, B., Atmoko, H., Ridwan, & Kosasih 2009. Estimation Of Water Saturation In Carbonate Reservoirs Without Resistivity Log Data. Part II: Formulation Of A New Model. Scientific Contributions Oil And Gas, 32(1): 9-15. DOI: https://doi.org/10.29017/SCOG.32.1.827
Widarsono, B. 2018. A Customized Quasi Three-Phase Drainage Relative Permeability Model For Some Indonesian Water-Wet Sandstones. Scientific Contributions Oil And Gas, 41(1): 1-15. DOI: https://doi.org/10.29017/SCOG.41.1.61
Elhossainy, M. M., Basal, A. K., ElBadrawy, H. T., Salam, S. A., & Sarhan, M. A. 2021. Well logging data interpretation for appraising the performance of Alam El Bueib reservoir in Safir Oil Field, Shushan Basin, Egypt. Journal of Petroleum Exploration and Production, 11: 2075-2089. DOI: https://doi.org/10.1007/s13202-021-01165 7
Dewanto, O. 2016. Petrofisika Log (1st ed., pp. 1-225). CV. Anugrah Utama Raharja (AURA).
Epov, M., Suhorukova, C., Glinskikh, V., Nikitenko, M., Nechaev, O., & Surodina, I. (2013). Effective Electromagnetic Log Data Interpretation in Realistic Reservoir Models. Open Journal of Geology, 3(28): 81-86 DOI: https://doi.org/10.4236/ojg.2013.32B017
Alexsandro, G. C., Da P. Carlos, A. C., & Geraldo, G. N. 2017. Facies classification in well logs of the Namorado oilfield using Support Vector Machine algorithm [Conference Pape]. The Brazilian Geophysical Society. DOI: https://doi.org/10.1190/sbgf2017-365
Rosalline, A. H., Nugroho, M. O. B., & Rizky, A. 2023. Tinjauan Geologi dan Pemodelan Fasies 3D, Lapangan “Glory”, Formasi Talang Akar, Cekungan Sumatra Selatan. Jurnal Ilmiah Geologi Pangea, 10(2): 87-98. DOI: https://doi.org/10.31315/jigp.v10i2.11216
Oetomo, M. A., Harmoko, U., & Yuliyanto, G. 2019. Reservoir characterization by petrophysical analysis and core data validation, a case study of the “x” field prospect zoneJournal of
Physics. Conference Series, 1217(1), 1217(2019): 012015. 1217(2019): 012015. IOP Publishing. DOI: https://doi.org/10.1088/1742-6596/1217/1/012015
Widarsono, B. 2011. The Importance Of Litho-Facies Distinction In Determining The Most Representative Cementation Factors For Well-Log Evaluation : An Old Issue Persistently Neglected. Scientific Contributions Oil & Gas, 34(2): 139-148. DOI: https://doi.org/10.29017/SCOG.34.2.800
Wihdany, F. I., Irawan, D., Utomo, M. R., & Fitro, A. M. 2019. Integrated Initial Water Saturation Modelling. Scientific Contributions Oil And Gas, 42(3): 95-107. DOI: https://doi.org/10.29017/SCOG.42.3.396
Archie, G. E. 1942. The Electrical Resistivity Log as an Aid in Determining Some Reservoir Characteristics. Journal Paper, 146(01), 54-62. DOI: https://doi.org/10.2118/942054-G
Mulyatno, B. S., Parameswari, F. S., Hikmah, N., Dewanto, O., & Wibowo, R. C. 2021. Reservoir properties modelling using multi-attribute seismic analysis in south Sumatra basin, Indonesia [IOP Conf. Series: Materials Science and Engineering]. IOP Publishing. DOI: https://doi.org/10.1088/1757-899X/1173/1/012013
Wibowo, R. C., Sarkowi, M., Mulyatno, B. S., Dewanto, O., Zaenudin, A., Aspari, A. A., & Amijaya, H. 2020. Thinned coal distribution modeling based on integrated geological and geophysical data: Case study CBM resources in Central Palembang Sub-Basin [AIP Conference Proceedings]. AIP Publishing. DOI: https://doi.org/10.1063/5.0006962
Widarsono, B. 2011. Irreducible Water Saturation And Its Governing Factors: Characteristics Of Some Sandstones In Western Indonesia. Scientific Contributions Oil & Gas, 34(1): 19-34. DOI: https://doi.org/10.29017/SCOG.34.1.788
Ordas, P. R., Abdurrokhim, Sendjaja, Y. A., & Nainggolan, T. B. 2023. Analysis Of Depositional Environment And Petroleum System Based On Integration Of Seismic And Well Data In The Coastal Of Central Sumatra Basin. Jurnal Ilmu dan Teknologi Kelautan Tropis, 15(2): 149-165. DOI: https://doi.org/10.29244/jitkt.v15i2.43145
Zheng, Y., Wan, D., Ayaz2 , Caiqin Ma3, M., & Ma, C. 2013. Utilizing NMR Mud Logging Technology To Measure Reservoir Fundamental Parameters in Well Site. Energy and Power Engineering, 5: 1508-1511. DOI: https://doi.org/10.4236/epe.2013.54B285
Chasandra, B., Dewanto, O., & Juniari, N. P. 2020. Karakterisasi Reservoar Melalui Analisis Petrofisika Berdasarkan Data Log Sumur “TRD” Formasi Air Benakat. JGE (Jurnal Geofisika Eksplorasi), 4(1): 78-93. DOI: https://doi.org/10.23960/jge.v4i1.7
Shi, F., Wang, Y., & Liu, X. 2016. Study on Calculation Method of Compressional Velocities Based on Field Well Logs. International Journal of Geosciences, 7(7): 928-937. DOI: https://doi.org/10.4236/ijg.2016.77069
Aminzadeh, F., & Dasgupta, S. N. 2013. Reservoir Characterization. Developments in Petroleum Science, 60: 151-189. DOI: https://doi.org/10.1016/B978-0-444-50662-7.00006-8
Diria, S. A., Purba, H., & Tampubolon, R. A. 2017. Reservoir and Hydrocarbon Identification Using Synchrosqueezing Transform. Lembaran Publikasi Minyak dan Gas Bumi, 51(3): 179-191. DOI: https://doi.org/10.29017/LPMGB.51.3.29
Parulian Butar Butar, M. H., Juventa, & Marlinda, L. 2023. Identifikasi Prospek Reservoir Hidrokarbon Menggunakan Inversi Impedansi Akustik Pada Blok Kampar. Lembaran Publikasi Minyak dan Gas Bumi, 57(1): 43-59. DOI: https://doi.org/10.29017/LPMGB.57.1.1324
Aminzadeh, F. 2021. Reservoir Characterization: Fundamentals and Applications 1: 1-221. Scrivener Publishing LLC. DOI: https://doi.org/10.1002/9781119556237
Rohmana, R. C., Fardiansyah, I. F., Taufani, L., & Harishidayat, D. 2021. Karakteristik dan Indeks Kualitas Reservoar Hidrokarbon Menggunakan Metode Pemetaan Digital pada Formasi Ngrayong, Cekungan Jawa Timur Utara. Lembaran Publikasi Minyak dan Gas Bumi, 55(3): 129-140. DOI: https://doi.org/10.29017/LPMGB.55.3.708
Alimoradi, A., Moradzadeh, A., & Bakhtiari, M. R. 2011. Methods of water saturation estimation: Historical perspective. Journal of Petroleum and Gas Engineering, 2(3): 45-53. DOI: http://www.academicjournals.org/JPGE
Widarsono, B. 2012. Choice Of Water Saturation Model In Log Analysis And Its Implication To Water Saturation Estimates – A Further Investigation. Scientific Contributions Oil & Gas, 35(3): 99-107. DOI: https://doi.org/10.29017/SCOG.35.3.782
Mohamad, A. M., & Hamada, G. M. 2017. Determination techniques of Archie’s parameters: A, m and n in heterogeneous reservoirs. Journal of Geophysics and Engineering, 14(6): 1358-1367. DOI: https://doi.org/10.1088/1742-2140/aa805c
Sitaresmi, R., Wijanarko, G. H., Wijayanti, P., & Kusumawardhani, D. 2019. Determining Of Formation Water Saturation To Estimate Remining Hydrocarbon Saturation In The X Layer Y Field. Jurnal Petro, III(3): 119-125. DOI: https://doi.org/10.25105/petro.v8i3.5514
Soleymanzadeh, A., Kaj, P. K., Kord, S., & Monjezi, M. 2021. A new technique for determining water saturation based on conventional logs using dynamic electrical rock typing. Journal of Petroleum Science and Engineering, 196: 1-13. DOI: https://doi.org/10.1016/j.petrol.2020.107803
Aymen, M., Al-Heeti, Omer, F., & Al-Fatlawi 2022. A Review of Historical Studies for Water Saturation Determination Techniques. Iraqi Geological Journal, 55(2A): 78-93. DOI: https://doi.org/10.46717/igj.55.2A.4Ms-2022-07-20