EVALUATING THE EFFICACY OF ENCAPSULATED-EGGPLANT PEEL EXTRACT AS A POTENTIAL ANTIOXIDANT SUPPLEMENT

Authors

  • Nadya Alfa Cahaya Imani Chemical Engineering Study Program, Faculty of Engineering, Universitas Negeri Semarang, Sekaran Campus, Gunungpati, Semarang, Central Java, 50229 Indonesia
  • Ratna Dewi Kusumaningtyas Chemical Engineering Study Program, Faculty of Engineering, Universitas Negeri Semarang, Sekaran Campus, Gunungpati, Semarang, Central Java, 50229 Indonesia
  • Dwi Gansar Santi Wijayanti Physical, Health, and Recreation Education Study Program, Faculty of Sport Science, Universitas Negeri Semarang, Sekaran Campus, Gunungpati, Semarang, Central Java, 50229 Indonesia
  • Eka Diyanti Chemical Engineering Study Program, Faculty of Engineering, Universitas Negeri Semarang, Sekaran Campus, Gunungpati, Semarang, Central Java, 50229 Indonesia
  • Kakalia Putri Auralita Chemical Engineering Study Program, Faculty of Engineering, Universitas Negeri Semarang, Sekaran Campus, Gunungpati, Semarang, Central Java, 50229 Indonesia
  • Achmad Wikandaru Chemical Engineering Study Program, Faculty of Engineering, Universitas Negeri Semarang, Sekaran Campus, Gunungpati, Semarang, Central Java, 50229 Indonesia
  • Haryo Kuncoko PT Plantamor Semarang, Central Java, 50142 Indonesia

DOI:

https://doi.org/10.11113/aej.v15.23154

Keywords:

eggplant peel, encapsulation, Antioxidant, supplement, extraction

Abstract

This study aims to provide in-depth insight into the potential of encapsulated-eggplant peel as an anti-oxidant supplement, which could be a basis for the development of new therapies or products in the fields of health and nutrition. To overcome the shortcomings of eggplant peel extract, in this research, an encapsulation of eggplant peel extract was carried out using pectin, gelatin, and gum arabic to increase the absorption capacity of antioxidants, the shelf life, bioavailability of anti-oxidant compounds, and their effectiveness as a supplement. The results from morphological and functional group observation showed that encapsulation was done successfully. Eggplant peel extract had the highest antioxidant activity as indicated by the need for only 3.872 g of extract to reduce the number of radicals by 50% (IC50), followed by encapsulated eggplant peel extract using gum arabic, gelatin, and lastly pectin. The results obtained indicate that the encapsulation process of eggplant peel extract has been carried out well and this product has the potential to be used as an anti-oxidant supplement.

References

V. Lobo, A. Patil, A. Phatak, and N. Chandra, 2010. “Free radicals, antioxidants and functional foods: Impact on human health,” Pharmacognosy Reiews. 4(8): 118. DOI: 10.4103/0973-7847.70902.

S. N. Kumar, H. R. Nair, and P. K. B, 2023. “Comparative analysis of anti-oxidant potential of vanillin and ferulic acid invitro,” Food and Humanity, 1: 1206–1212. DOI: 10.1016/j.foohum.2023.09.014.

D. Bera, D. Lahiri, and A. Nag, 2006. “Studies on a natural antioxidant for stabilization of edible oil and comparison with synthetic antioxidants,” Journal of Food Engineering. 74(4): 542–54. DOI: 10.1016/j.jfoodeng.2005.03.042.

B. H. Jennings and C. C. Akoh, 2009, “Effectiveness of natural versus synthetic antioxidants in a rice bran oil-based structured lipid,” Food Chemistry. 114(4): 1456–1461. DOI: 10.1016/j.foodchem.2008.11.031.

X. Xu et al. 2021. “Synthetic phenolic antioxidants: Metabolism, hazards and mechanism of action,” Food Chemistry. 353: 129488. DOI: 10.1016/j.foodchem.2021.129488.

S. C. Lourenço, M. Moldão-Martins, and V. D. Alves, 2019. “Antioxidants of Natural Plant Origins: From Sources to Food Industry Applications,” Molecules, 24(22): 4132. DOI: 10.3390/molecules24224132.

K. A. Fadhil, T. Suryati, and A. Jayanegara, 2023 “Comparison Between Natural and Synthetic Antioxidants in Beef Products: A MetaAnalysis,” Jurnal Ilmu Produksi dan Teknologi Hasil Peternakan, 11(1): 19–26, , DOI: 10.29244/jipthp.11.1.19-26.

Y. Xu et al., 2023. “Profiles of novel high-molecular-weight synthetic antioxidants in urine and associated child exposure in China,” Science of The Total Environment, 870: 161844. DOI: 10.1016/j.scitotenv.2023.161844.

L. Boulekbache-Makhlouf, L. Medouni, S. Medouni-Adrar, L. Arkoub, and K. Madani, 2013. “Effect of solvents extraction on phenolic content and antioxidant activity of the byproduct of eggplant,” Industrial Crops and Products. 49: 668–674. DOI: 10.1016/j.indcrop.2013.06.009.

J. Fuchs, 1998. “Potentials and limitations of the natural antioxidants RRR-alpha-tocopherol, l-ascorbic acid and β-carotene in cutaneous photoprotection11This review is dedicated to Lester Packer, University of California, Berkeley.,” Free Radical Biology and Medicine, 25(7): 848–873. DOI: 10.1016/S0891-5849(98)00161-0.

G. Upadhyay, S. P. Gupta, O. Prakash, and M. P. Singh, 2010. “Pyrogallol-mediated toxicity and natural antioxidants: Triumphs and pitfalls of preclinical findings and their translational limitations,” Chemico-Biological Interactions. 183(3): 333–340. DOI: 10.1016/j.cbi.2009.11.028.

Z. Nooshi Manjili, A. Sadeghi Mahoonak, M. Ghorbani, and H. Shahiri Tabarestani, “Multi-layer encapsulation of pumpkin (Cucurbita maxima L.) seed protein hydrolysate and investigating its release and antioxidant activity in simulated gastrointestinal digestion,” Heliyon, vol. 10, no. 8, p. e29669, Apr. 2024, DOI: 10.1016/j.heliyon.2024.e29669.

B. Yang et al., 2024. “Encapsulation of antioxidants with colloidal lipid particles for enhancing the photooxidation stability of phytosterol in Pickering emulsions,” Food Chemistry. 452: 139474, Sep. DOI: 10.1016/j.foodchem.2024.139474.

T. N. Soliman, A. Negm El-Dein, S. Abd Al-Diam, A. Allayeh, H. Awad, and N. S. Flefil, 2024, “Characterization of C-phycocyanin antioxidant, anti-inflammatory, anti-tumour, and anti-HCoV-229E activities and encapsulation for implementation in an innovative functional yogurt,” Heliyon, 10(11): e31642. DOI: 10.1016/j.heliyon.2024.e31642.

S. Shahabi Mohammadabadi, M. Goli, and S. Naji Tabasi. 2022. “Optimization of Bioactive Compound Extraction from Eggplant Peel by Response Surface Methodology: Ultrasound-Assisted Solvent Qualitative and Quantitative Effect,” Foods, 11(20): 3263. DOI: 10.3390/foods11203263.

S. A. Zearah, 2024. “Assessment of the Antioxidant Potential of Anthocyanin-Rich Extract of Eggplant (Solanum melongena L.) and Evaluation of its Antimicrobial Activity,” Tropical Journal of Natural Product Research, 8(3). DOI: 10.26538/tjnpr/v8i3.13.

L. A. Contreras-Angulo et al., 2022. “Metabolomic Analysis of Phytochemical Compounds from Agricultural Residues of Eggplant (Solanum melongena L.),” Molecules, 27(20): 7013. DOI: 10.3390/molecules27207013.

J. A. Kazlauskaite, I. Matulyte, M. Marksa, and J. Bernatoniene, 2024. “Technological Functionalisation of Microencapsulated Genistein and Daidzein Delivery Systems Soluble in the Stomach and Intestines,” Pharmaceutics, 16(4): 530. DOI: 10.3390/pharmaceutics16040530.

N. V. N. Jyothi, P. M. Prasanna, S. N. Sakarkar, K. S. Prabha, P. S. Ramaiah, and G. Y. Srawan, 2010. “Microencapsulation techniques, factors influencing encapsulation efficiency,” Journal of Microencapsulation. 27(3): 187–197. DOI: 10.3109/02652040903131301.

H. J. Al-Jaaf, N. S. Ali, S. M. Alardhi, and T. M. Albayati, 2022. “Implementing eggplant peels as an efficient bio-adsorbent for treatment of oily domestic wastewater,” Desalination and Water Treatment. 245: 226–237. DOI: 10.5004/dwt.2022.27986.

M. H. Karimi Darvanjooghi, S. M. Davoodi, A. Y. Dursun, M. R. Ehsani, I. Karimpour, and E. Ameri, “Application of treated eggplant peel as a low-cost adsorbent for water treatment toward elimination of Pb2+: Kinetic modeling and isotherm study,” Adsorption Science and Technology, vol. 36, no. 3–4, pp. 1112–1143, May 2018, DOI: 10.1177/0263617417753784.

J. Joel et al., “Extraction and Characterization of Hydrocolloid Pectin from Goron Tula (Azanza garckeana) fruit,” 2018, [Online]. Available: www.worldscientificnews.com. Retrieved on 2nd April 2024

R. K. Mishra, M. Datt, K. Pal, and A. K. Banthia, 2008. “Preparation and characterization of amidated pectin based hydrogels for drug delivery system,” Journal of Material Science: Materials in Medicine. 19(6): 2275–2280. DOI: 10.1007/s10856-007-3310-4.

S. Bhowmik, J. Islam, T. Debnath, M. Miah, S. Bhattacharjee, and M. Khan, 2017. “Reinforcement of Gelatin-Based Nanofilled Polymer Biocomposite by Crystalline Cellulose from Cotton for Advanced Wound Dressing Applications,” Polymers (Basel), 9(6): 222. DOI: 10.3390/polym9060222.

D. E. Estrella-Osuna et al., 2022. “Nanoencapsulation of Eggplant (Solanum melongena L.) Peel Extract in Electrospun Gelatin Nanofiber: Preparation, Characterization, and In Vitro Release,” Nanomaterials, 12(13): 2303. DOI: 10.3390/nano12132303.

H. Espinosa-Andrews, O. Sandoval-Castilla, H. Vázquez-Torres, E. J. Vernon-Carter, and C. Lobato-Calleros, 2010. “Determination of the gum Arabic–chitosan interactions by Fourier Transform Infrared Spectroscopy and characterization of the microstructure and rheological features of their coacervates,” Carbohydrate Polymers, 79(3): 541–546. DOI: 10.1016/j.carbpol.2009.08.040.

K. Diatta et al., 2020.“Evaluation of the Antioxidant Activity of Stalk and Fruit of Solanum aethiopicum L. (Solanaceae),” Asian Journal of Research in Biochemistry, 6–12, DOI: 10.9734/ajrb/2020/v6i130107.

N. A. C. Imani, Y. Kusumastuti, H. T. B. M. Petrus, D. Timotius, N. R. E. Putri, and M. Kobayashi, 2022, “Preparation, Characterization, and Release Study of Nanosilica/Chitosan Composite Films,” International Journal of Technology, 13(2): 444. DOI: 10.14716/ijtech.v13i2.4733.

Downloads

Published

2025-05-31

Issue

Section

Articles

How to Cite

EVALUATING THE EFFICACY OF ENCAPSULATED-EGGPLANT PEEL EXTRACT AS A POTENTIAL ANTIOXIDANT SUPPLEMENT. (2025). ASEAN Engineering Journal, 15(2), 119-124. https://doi.org/10.11113/aej.v15.23154