MULTI-DIMENSIONAL SQUARE WAVE EVALUATION AND SIMULATION EMPLOYING THE CUBIC INTERPOLATION PSEUDO-PARTICLE METHOD
DOI:
https://doi.org/10.11113/aej.v15.23676Keywords:
Cubic Interpolation pseudo-Particle (CIP), first order upwind, square wave, mean square error (MSE).Abstract
The Cubic Interpolation Pseudo-Particle (CIP) method is used in various papers to simulate different phenomena. It solves hyperbolic-type equations and is more efficient than a first-order upwind scheme. This verification gives one the future to apply CIP to other or more complex geometries. In this paper, we simulate the numerically square wave propagation based on characteristic equations, using the CIP method using 1D-CIP and 2D-CIP. Based on the idea that the wave field and its spatial derivative propagate along the same characteristic curves obtained from a hyperbolic differential equation. In this research, we simulate the numerical propagation of the acoustic wave based on characteristic equations, using the CIP method with two dimensions 1D-CIP & and 2D-CIP. In addition, provides several numerical simulation behaviors in demonstrating how the CIP can accurately model the propagation of acoustic waves without much numerical dispersion. Moreover, the mean square error displayed the superiority of 2D-CIP with 0.5% over 1D-CIP. However, the characteristic-based CIP method is a particularly effective way to handle wave propagation to tackle the fluid's dynamic challenges and give accuracy, managing nonlinearities, and flexibility, making it a useful tool in numerical analysis.
References
Hu, Z., Zhao, X., Li, M. 2021. Numerical Simulation of Water Entry of Wedges in Waves Using A CIP-Based Model. China Ocean Engineering 35: 48–60. DOI: https://doi.org/10.1007/s13344-021-0005-4
Nakamura, T., and Yabe, T. 1999. Cubic interpolated propagation scheme for solving the hyper-dimensional Vlasov-Poisson equation in phase space. Computer Physics Communications, 120: 122-154.
Zhao, X. 2013. A CIP-based numerical simulation of free surface flow related to freak waves. China Ocean Engineering 27: 719–736. DOI: https://doi.org/10.1007/s13344-013-0060-6
Konno, M., Okubo, K., Tsuchiya, T., Tagawa, N. 2011. A Consideration of Multi-Dimensional Simulation of Nonlinear Acoustic Wave Propagation Using the CIP Method. In: André, M., Jones, J., Lee, H. (eds) Acoustical Imaging. Acoustical Imaging, 30, Springer, Dordrecht. DOI: https://doi.org/10.1007/978-90-481-3255-3_35
Zhao, X., Hu, C., Sun, Z. 2010. Numerical simulation of focused wave generation using CIP method. Proceedings of the 20th (2010) International Offshore and Polar Engineering Conference ISOPE-2010. 596-603.
Fu, Y., Zhao, X., Cao, F. 2017. Numerical simulation of viscous flow past an oscillating square cylinder using a CIP-based model. Journal of Hydrodynamics 29: 96–108. DOI: https://doi.org/10.1016/S1001-6058(16)60721-7
Fukumitsu, K., Yabe, T., Ogata, Y., Oami, T., and Ohkubo, T. 2015. A new directional-splitting CIP interpolation with high accuracy and low memory consumption. Journal of Computational Physics, 286: 62–69. DOI: https://doi.org/10.1016/j.jcp.2014.12.045.
Sidik, N. A. C., Rahman,M. R. A. & Rahman, M. H. Al Mola. 2009. Contrained Interpolated Profile for Solving BGK Boltzmann Equation. European Journal of Scientific Research, 35(4): 559-569.
Eso, R., Safiuddin, L. O., Agusu, L. and Arfa, L. M. R. F. 2018. Simulation of 2D Waves in Circular Membrane Using Excel Spreadsheet with Visual Basic for Teaching Activity. Journal of Physics: Conference Series, 1011: 012-088. DOI: https://doi.org/10.1088/1742-6596/1011/1/012088.
Shiraishi, K. and Matsuoka, T. 2006. The simulation of acoustic wave propagation by using characteristic curves with CIP method. Butsuri-Tansa/Geophysical Exploration. 59(3): 261-274. DOI: https://doi.org/10.3124/segj.59.261.
Zhao, X. Z., Wang, X.G., Zuo, Q. H. 2015. Numerical simulation of wave interaction with coastal structures using a CIP-based method. Procedia Engineering. 116: 155–162. DOI: https:// doi: 10.1016/J.PROENG.2015.08.277
Azwadi, C., Al-Mola, M. H., and Agus, S. 2013. Numerical investigation on shear driven cavity flow by the constrained interpolated profile lattice Boltzmann method. WSEAS Transactions on Mathematics. 12(4): 426-435.
Karakoç,S. B. G., Uçar, Y. and Yağmurlu, N. 2015. Numerical solutions of the MRLW equation by cubic B-spline Galerkin finite element method. Kuwait Journal of Science. 42(2): 141–159. DOI: https://journalskuwait.migration.publicknowledgeproject.org/index.php/KJS/article/view/210
Karakoc, S. B. G. and Bhowmik, S. K. 2018. Galerkin finite element solution for Benjamin–Bona–Mahony–Burgers equation with cubic B-splines. Computers & Mathematics with Applications. 77(7): 1917–1932. DOI: https://doi.org/10.1016/j.camwa.2018.11.023
Konno, M., Okubo, K., Tsuchiya, T., Tagawa, N. 2011. A Consideration of Multi-Dimensional Simulation of Nonlinear Acoustic Wave Propagation Using the CIP Method. In: André, M., Jones, J., Lee, H. (eds) Acoustical Imaging. Acoustical Imaging. 30: 305–313. DOI: https://doi.org/10.1007/978-90-481-3255-3_35
Attarzadeh, S.M.R., Nor Azwadi, C.S., Haghbin, F., 2011. Cubic-Interpolated-Pseudo-Particle Method to Predict Dynamic Behaviour of Fluid in Shear Driven Cavity. Applied Mechanics and Materials, 110–116: 377–384. DOI: https://doi.org/10.4028/www.scientific.net/amm.110-116.377
Yabe, T., Xiao, F., Utsumi, T., 2001. The Constrained Interpolation Profile Method for multiphase analysis. Journal of Computational Physics, 169(2): 556–593. DOI: https://doi.org/10.1006/jcph.2000.6625
Toda, K., Ogata, Y., & Yabe, T., 2009. Multi-dimensional conservative semi-Lagrangian method of characteristics CIP for the shallow water equations. Journal of Computational Physics, 228(13): 4917–4944. DOI: https://doi.org/10.1016/j.jcp.2009.04.003













