SOUND TRANSMISSION LOSS PERFORMANCE OF BIO-COMPOSITE MICRO-PERFORATED PANELS BACKED BY NATURAL FIBERS
DOI:
https://doi.org/10.11113/aej.v15.24464Keywords:
Micro-perforated panel (MPP), Natural fiber, Sound transmission loss (STL), Acoustic properties, Impedance tubeAbstract
Micro-perforated panels (MPPs) with natural fiber backing hold great potential for the development of acoustic panels due to their various advantages over conventional porous materials. Some aesthetic restrictions and the bulky nature posed by conventional porous materials have made natural fiber-reinforced MPP a more adaptable and compelling solution for acoustic efficacy. Therefore, in this paper, MPPs backed by coconut coir, kenaf fiber, and palm leaf fiber are the focused for assessing the sound transmission loss (STL) performance. The selection of these natural fibers is largely due to their favorable inherent natural characteristics and acoustic properties. To assess STL, the current study employed the impedance tube approach to analyze the performance of materials in attenuating sound pressure across varying frequencies. Results reveal that the MPP reinforced with coconut coir achieved the maximum STL at 42 dB in the mid-frequency range of 190 to 230 Hz, demonstrating that it may be a highly suitable material for applications that require soundproofing. Undoubtedly, natural fiber-backed panels offer a viable alternative and an effective solutions to mitigate different forms of sound transmission, including airborne and structure-borne noise, thereby enhancing overall acoustic insulation.
References
Yuvaraj, L., & Jeyanthi, S. 2019. Acoustic performance of countersunk micro-perforated panel in multilayer porous material. Building Acoustics, 27(1): 3 20. DOI: https://doi.org/10.1177/1351010X19886588
Cobo, P. 2021. Modelling of microperforated panel absorbers with circular and slit hole geometries. Acoustics, 3: 665-678. DOI: https://doi.org/10.3390/
Mohammadi, M., Ishak, M. R., Sultan, M. T. H., & others. 2025. A comprehensive review of factors influencing the sound absorption properties of micro-perforated panel structures. Journal of Vibration Engineering & Technologies, 13: 319. DOI: https://doi.org/10.1007/s42417-025-01849-y
Khalid, M. Y., Arif, Z. U., Sheikh, M. F., & Nasir, M. A. 2021. Mechanical characterization of glass and jute fiber-based hybrid composites fabricated through compression molding technique. International Journal of Materials Forming, 14: 1085–1095. DOI: https://doi.org/10.1007/s12289-021-01624-w
Lim, Z. Y., Putra, A., Nor, J. M., & Yaakob, M. Y. 2018. Sound absorption performance of natural kenaf fibres. Applied Acoustics, 130(7): 107-114. DOI: 10.1016/j.apacoust.2017.09.012
Rezaieyan, E., Taban, E., Berardi, U., Mortazavi, S. B., Faridan, M., & Mahmoudi, E. 2024. Acoustic properties of natural fiber reinforced composite micro-perforated panel (NFRC-MPP) made from cork fiber and polylactic acid (PLA) using 3D printing. Journal of Building Engineering, 84: 108491. DOI: https://doi.org/10.1016/j.jobe.2024.108491
Beheshti, M. H., Khavanin, A., Jafarizaveh, M., & Tabrizi, A. (2024). A novel acoustic micro-perforated panel (MPP) based on sugarcane fibers and bagasse. Journal of Materials Science: Materials in Electronics, 19(35): 1–15. DOI: https://doi.org/10.1186/s40712-024-00173-9
Hassan, T., Jamshaid, H., Mishra, R., Khan, M. Q., Petru, M., Novak, J., Hromasova, M. 2020. Acoustic, mechanical and thermal properties of green composites reinforced with natural fibers waste. Polymers, 12(3): 654. DOI:10.3390/polym12030654
Shi-Jia, M. A., Yuan-Jian, L. I. N., Jiang-Feng, L. I. U., Kundwa, M. J., Ishimwe, H., & Pei-lin, W. A. N. G. 2021. Multiscale research on pore structure characteristics and permeability prediction of sandstone. Geofluids, 2021: 3356645. DOI: https://doi.org/10.1155/2021/3356645
Rahman, M. F., Wu, J., & Tseng, T. L. 2021) Automatic morphological extraction of fibers from SEM images for quality control of short fiber-reinforced composites manufacturing. CIRP Journal of Manufacturing Science and Technology, 33: 176–187. DOI: https://doi.org/10.1016/j.cirpj.2021.03.010
Berardi, U., & Iannace, G. 2015. Acoustic characterization of natural fibers for sound absorption applications. Building and Environment, 94: 840–852. DOI: https://doi.org/10.1016/j.buildenv.2015.05.029
Saini, M. K., Bagha, A. K., & Kumar, S. 2019. Experimental study to measure the transmission loss of double panel natural fibers. Materials Today: Proceedings, 26: 482–486. DOI: https://doi.org/10.1016/j.matpr.2019.12.107
Mamtaz, H., Fouladi, M. H., Al-Atabi, M., & Namasivayam, S. N. 2016. Acoustic absorption of natural fiber composites. Journal of Engineering, 2016. 1-11. DOI: https://doi.org/10.1155/2016/5836107
Samaei, E. S., Berardi, U., Taban, E., Soltani, P., & Mohammad Mousavi, S. 2021. Natural fibro-granular composite as a novel sustainable sound-absorbing material. Applied Acoustics, 181: 108157. DOI: https://doi.org/10.1016/j.apacoust.2021.108157
Cucharero, J., Ceccherini, S., Maloney, T., Lokki, T., & Hänninen, T. 2021. Sound absorption properties of wood-based pulp fibre foams. Cellulose, 28(7): 4267–4279. DOI: https://doi.org/10.1007/s10570-021-03774-1
Taban, E., Amininasab, S., Soltani, P., Berardi, U., Abdi, D. D., & Samaei, S. E. 2021. Use of date palm waste fibers as sound absorption material. Journal of Building Engineering, 41. DOI: https://doi.org/10.1016/j.jobe.2021.102752
Abdi, D. D., Monazzam, M., Taban, E., Putra, A., Golbabaei, F., & Khadem, M. 2021. Sound absorption performance of natural fiber composite from chrome shave and coffee silver skin. Applied Acoustics, 182. DOI: https://doi.org/10.1016/j.apacoust.2021.108264
Kudva, A., Gt, M., & K , D. P. 2022. Physical, thermal, mechanical, sound absorption and vibration damping characteristics of natural fiber reinforced composites and hybrid fiber reinforced composites: A review. Cogent Engineering, 9(1): 1–30. DOI: https://doi.org/10.1080/23311916.2022.2107770
Taban, E., Mirzaei, R., Faridan, M., Ghalenoei, M. 2020. Morphological, acoustical, mechanical, and thermal properties of sustainable green Yucca (Y. gloriosa) fibers: An exploratory investigation. Journal of Environmental Health Science and Engineering, 18(3): 883–896. DOI: https://doi.org/10.1007/s40201-020-00513-9
Hajimohammadi, M., Soltani, P., Semnani, D., Taban, E., & Fashandi, H. 2022. Nonwoven fabric coated with core-shell and hollow nanofiber membranes for efficient sound absorption in buildings. Building and Environment, 213. DOI: https://doi.org/10.1016/j.buildenv.2022.108887
Montava Belda, I., Juliá Sanchis, E., Segura Alcaraz, J., & Gadea Borrell, J. 2024. Acoustic characterisation of boards manufactured with fruit stones mixed with coconut fibre. Building Acoustics, 31(4): 363–375. DOI: https://doi.org/10.1177/1351010X241267707
Rezaieyan, E., Taban, E., Berardi, U., Mortazavi, S. B., Faridan, M., & Mahmoudi, E. 2024. Acoustic properties of natural fiber reinforced composite micro-perforated panel (NFRC-MPP) made from cork fiber and polylactic acid (PLA) using 3D printing. Journal of Building Engineering, 84: 108491. DOI: https://doi.org/10.1016/j.jobe.2024.108491
Gan, S., Chen, R. S., Padzil, F. N. M., Moosavi, S., Tarawneh, M. A., Loh, S. K., & Idris, Z. 2023. Potential valorization of oil palm fiber in versatile applications towards sustainability: A review. Industrial Crops and Products, 199: 116763. DOI: https://doi.org/10.1016/j.indcrop.2023.116763
Olanrewaju, O., Oladele, I. O., & Adelani, S. O. 2025. Recent advances in natural fiber reinforced metal/ceramic/polymer composites: An overview of the structure-property relationship for engineering applications. Hybrid Advances, 8: 100378. DOI: https://doi.org/10.1016/j.hybadv.2025.100378













