Trends and Tips in Protein Engineering, A Review

Authors

  • Kian Mau Goh Faculty of Biosciences and Bioengineering, 81310 Skudai, Universiti Teknologi Malaysia
  • Goh Poh Hong Faculty of Biosciences and Bioengineering, 81310 Skudai, Universiti Teknologi Malaysia
  • Ng Han Chyi @ Pearly Ng Sunway College, 81100 Johor Bahru, Malaysia.
  • Chai Kian Piaw Faculty of Biosciences and Bioengineering, 81310 Skudai, Universiti Teknologi Malaysia
  • Raja Noor Zaliha Raja Abdul Rahman Enzyme and Microbial Technology Research, Faculty of Biotechnology and Biomolecular Science, 43400 Serdang, Universiti Putra Malaysia

DOI:

https://doi.org/10.11113/jt.v59.1574

Keywords:

Protein mutagenesis, protein modification, site-directed mutagenesis, random mutagenesis

Abstract

Protein engineering is widespread approach in the branch of protein science. It is a useful tool for elucidating function of a single or a stretch of amino acids. Some protein engineers use it to improve the properties of a protein. Despite protein engineering is a powerful tool; it remains an unexplored field in Southeast Asia, specifically in the developing countries. Therefore, this chapter aims to provide a basic overview on the tips, methods, applications, common problems and solutions, as well as the progress of protein engineering in Southeast Asia.

References

Zhang, J., Chiodini, R., Badr, A., and Zhang, G. 2011. The Impact of

Next-generation Sequencing on Genomics. Journal of Genetics and

Genomics. 38(3): 95–109.

Benetti, F., and Legname, G. 2009. De Novo Mammalian Prion

Synthesis. Prion. 3(4): 213–219.

Declerck, N., Machius, M., Wiegand, G., Huber, R., and Gaillardin, C.

Probing Structural Determinants Specifying High

Thermostability in Bacillus Licheniformis α-amylase. Journal of

Molecular Biology. 301(4): 1041–1057.

Lin, K. F., Lee, T. R., Tsai, P. H., Hsu, M. P., Chen, C. S., and Lyu, P.

C. 2007. Structure-based Protein Engineering for α-amylase Inhibitory

Activity of Plant Defensin. Proteins: Structure, Function, and

Bioinformatics. 68(2): 530–554.

Glieder, A., Farinas, E. T. and Arnold, F. H. 2002. Laboratory

Evolution of a Soluble Self- Sufficient, Highly Active Alkane

Hydroxylase. Nature Biotechnology. 20: 1135–1139.

Wang, Q., Buckle, A. M., Foster, N. M., Johnson, C. M. and Fersht, A.

R. 1999. Design of Highly Stable Functional GroEL Minichaperones.

Protein Science. 8: 2186–2193.

Yan, Z. X., Hui, R., Lin, M., Qing, H. G., Jun, T. X. and He, C. Q.

Enhancement of the Thermostability of β- 1,3-1,4-glucanase by

Directed Evolution. Journal of Zhejiang Universiti SCIENCE A. 7(11):

–1955.

Parsiegla, G., Schmidt, A. K. and Schulz, G. E. 1998. Substrate

Binding to a Cyclodextrin Glycosyltransferase and Mutations

Increasing the γ-cyclodextrin Production. European Journal of

Biochemistry. 255: 710–717.

Brange, J., Ribel, U., Hansen, J. F., Dodson, G., Hansen, M. T.,

Havelund, S., Melberg, S. G., Norris, F., Norris, K., Snel, L., Sorensen,

A. R. and Voigt, H. O. 1988. Monomeric insulins obtained by protein

engineering and their medical implications. Nature, 333:679–682.

Chow, J. Y., Xue, B., Lee, K. H., Tung, A., Wu, L., Robinson, R. C.,

and Yew, W. S. 2010. Directed Evolution of a Thermostable QuorumQuenching Lactonase from the Amidohydrolase Superfamily. Journal

of Biological Chemistry. 285(52): 40911–40920.

Zhou, M., Xu, H., Wei, X., Ye, Z., Wei, Y., Gong, W., Wang, Y. and

Zhu, Z. 2006. Identification of a Glyphosate-Resistant Mutant of Rice

-Enolpyruvylshikimate-3-Phosphate Synthase Using a Directed

Evolution Strategy. Plant Physiology. 140: 184–195.

Castle, L. A., Siehl, D. L., Gorton, R., Patten, P. A., Chen, Y. H.,

Bertain, S., Choe, H. J., Duck, N., Wong, J., Liu, D., and Lassner, M.

W. 2004. Discovery and Directed Evolution of a Glyphosate Tolerance

Gene. Science. 304: 1151–1154.

Handa, P. and Varshney, U. 1998. Rapid and Reliable Site Directed

Mutagenesis Using Kunkel's Approach. Indian Journal of Biochemistry

and Biophysics. 25(2): 63–66.

Kammann, M., Laufs, J., Schell, J. and Gronenbom, B. 1989. Rapid

Insertional Mutagenesis of DNA by Polymerase Chain Reaction

(PCR). Nucleic Acids Research. 17: 5404.

Ke, S. H. and Madison, E. L. 1997. Rapid and Efficient Site-directed

Mutagenesis by Single-tube ‘Megaprimer’ PCR Method. Nucleic Acids

Research. 25(16): 3371–3372.

McPherson, M. and Moller, S. 2006. PCR. 2

nd ed. United Kingdom:

Taylor & Francis Group.

Howorka, S. and Bayley, H. 2002. High-Throughput Scanning

Mutagenesis by recombinant Polymerase Chain Reaction. In Braman,

J. (Ed.) Methods in Molecular Biology: In Vitro Mutagenesis

Protocols). New Jersey: Humana Press Inc. 139–147

Khemakhem, B., Ali, M. B., Aghajari, N., Juy, M., Haser, R., and

Bejar, S. 2009. The Importance of an Extra Loop in the B-Domain of

an Α-Amylase from B. stearothermophilus US100. Biochemical and

Biophysical Research Communications. 385(1): 78–83.

Witkowski, W. A., and Hardy, J. A. 2009. L2′ Loop is Critical for

Caspase-7 Active Site Formation. Protein Science. 18(7): 1459–1468.

Rezaie, A. R., and Yang, L. 2005. Deletion of the 60-loop Provides

New Insights into the Substrate and Inhibitor Specificity of Thrombin.

Thrombosis and Haemostasis. 93: 1047–1054.

Santini, S., and Derreumaux, P. 2004. Helix H1 of the Prion Protein is

Rather Stable Against Environmental Perturbations: Molecular

Dynamics of Mutation and Deletion Variants of PrP(90–231). Cellular

and Molecular Life Sciences. 61(7): 951–960.

Babu, K. S., Antony, A., Muthukumaran, T., and Meenakshisundaram,

S. 2008. Construction of Intein-Mediated Hgmcsf Expression Vector

and its Purification in Pichia Pastoris. Protein Expression and

Purification. 57(2): 201–205.

Gruber, K., Klintschar, G., Hayn, M., Schlacher, A., Steiner, W. and

Kratky, C. 1998. Thermophilic xylanase from Thermomyces

lanuginosus: High Resolution X-ray Structure and Modelling Study.

Biochemistry. 37: 13475–13485.

Brakmann, S. and Schwienhorst, A. 2004. Evolutionary Methods in

Biotechnology. Wiley-VCH, Weinheim.

Volkov, A. A. and Arnold, F. H. 2000. Methods for in vitro DNA

Recombination and Random Chimeragenesis. Methods in Enzymology.

: 447–456

Eswar, N., Marti-Renom, M. A., Webb, B., Madhusudhan, M. S.,

Eramian, D., Shen, M., Pieper, U. and Sali, A. 2006. Comparative

Protein Structure Modeling with MODELLER. Current Protocols in

Bioinformatics. (15:5.6.1–5.6.30.). California: John Wiley & Sons, Inc.

Zhang, Y. 2008. I-TASSER Server for Protein 3D Structure Prediction.

BMC Bioinformatics. 38(3): 95–109.

Brown, C., George, G., Jasaroska, S., Kidolezi, Y. and Ochoa, J.

http://www.kellogg.northwestern.edu/Departments/International/Intern

ationalFocus/Article/2011_Southeast%20Asian%20Biotech.aspx.

Goh, K. M., Mahadi, N. M., Hassan, O., Rahman, R. N. Z. R. A., and

Illias, R. M. 2009. A Predominant β-CGTase G1 Engineered to

Elucidate the Relationship between Protein Structure and Product

specificity. Journal of Molecular Catalysis B: Enzymatic. 57(1-4):

–277.

Low, K. O., Mahadi, N. M., Rahim, R. A., Rabu, A., Bakar, F. D. A.,

Murad, A. M. A. and Illias, R. M. 2010. Enhanced Secretory

Production of Hemolysin-mediated Cyclodextrin Glucanotransferase in

Escherichia Coli by Random Mutagenesis of the ABC Transporter

System. Journal of Biotechnology. 150: 453–459.

Abdullah, M. A. F., and Dean, D. H. 2004. Enhancement of Cry19Aa

Mosquitocidal Activity Against Aedes Aegypti by Mutations in the Putative Loop Regions of Domain II. Applied Environmental

Microbiology. 70(6): 3769–3771.

Nyon, M. P., Rice, D. W., Berrisford, J. M., Hounslow, A. M., Moir,

A. J. G., Huang, H., Nathan, S., Mahadi, N. M., Bakar, F. D., and

Craven, C. J. 2009. Catalysis by Glomerella cingulata Cutinase

Requires Conformational Cycling Between the Active and Inactive

States of its Catalytic Triad. Journal of Molecular Biology. 385(1):

–235.

Zhang, H., Lountos, G., Ching, C., and Jiang, R. 2010. Engineering of

Glycerol Dehydrogenase for Improved Activity Towards 1, 3-

butanediol. Applied Microbiology and Biotechnology. 88(1): 117–124.

Wongsantichon, J., Robinson, Robert,C., and Ketterman, and Albert,J.

Structural Contributions of Delta Class Glutathione Transferase

Active-site Residues to Catalysis. Biochemical Journal. 428: 25–32.

Chua, C. S., Biermann, D., Goo, K. S., and Sim, T. S. 2008.

Elucidation of Active Site Residues of Arabidopsis Thaliana Flavonol

Synthase Provides a Molecular Platform for Engineering Flavonols.

Phytochemistry. 69(1): 66–75.

Tan, C. L., Yeo, C. C., Khoo, H. E., and Poh, C. L. 2005. Replacement

of Tyrosine 181 by Phenylalanine in Gentisate 1,2-Dioxygenase I from

Pseudomonas alcaligenes NCIMB 9867 Enhances Catalytic Activities.

Journal of Bacteriology. 187(21): 7543–7545.

Spadiut, O., Pisanelli, I., Maischberger, T., Peterbauer, C., Gorton, L.,

Chaiyen, P., and Haltrich, D. 2009. Engineering of pyranose 2-oxidase:

Improvement for Biofuel Cell and Food Applications through SemiRational Protein Design. Journal of Biotechnology. 139(3): 250–257.

Katane, M., Saitoh, Y., Maeda, K., Hanai, T., Sekine, M., Furuchi, T.,

and Homma, H. 2011. Role of the Active Site Residues Arginine-216

And Arginine-237 in the Substrate Specificity of Mammalian DAspartate Oxidase. Amino Acids. 40(2): 467–476.

Kataoka, K., Hirota, S., Maeda, Y., Kogi, H., Shinohara, N., Sekimoto,

M., and Sakurai, T. 2011. Enhancement of Laccase Activity through

the Construction and Breakdown of a Hydrogen Bond at The Type I

Copper Center in Escherichia coli CueO and the Deletion Mutant Δα5-

CueO. Biochemistry. 50(4): 558–565.

Menach, E., Yasukawa, K., and Inouye, K. 2010. Effects of SiteDirected Mutagenesis of the Loop Residue of the N-Terminal Domain

Gly117 of Thermolysin on its Catalytic Activity. Bioscience,

Biotechnology, and Biochemistry. 74: 2457–2462.

Yasukawa, K., Mizuno, M., Konishi, A., and Inouye, K. 2010. Increase

in Thermal Stability of Moloney Murine Leukaemia Virus Reverse

Transcriptase by Site-directed Mutagenesis. Journal of Biotechnology.

(3): 299–306.

Suzuki, Y., Asada, K., Miyazaki, J., Tomita, T., Kuzuyama, T., and

Nishiyama, M. 2010. Enhancement of the Latent 3-isopropylmalate

Dehydrogenase Activity of Promiscuous Homoisocitrate

Dehydrogenase by Directed Evolution. Biochemical Journal. 431:

–410.

Kawata, T., and Ogino, H. 2010. Amino Acid Residues Involved in

Organic Solvent-stability of the LST-03 Lipase. Biochemical and

Biophysical Research Communications. 400(3): 384–388.

Downloads

Published

2012-09-15

How to Cite

Trends and Tips in Protein Engineering, A Review. (2012). Jurnal Teknologi (Sciences & Engineering), 59(1). https://doi.org/10.11113/jt.v59.1574