EFFECT OF CURING TIME ON THE PORE SIZE AND EFFECTIVE THICKNESS/POROSITY OF POLYESTER THIN FILM COMPOSITE NANOFILTRATION MEMBRANES

Authors

  • K. H. Mah Faculty of Chemical & Natural Resources Engineering, Universiti Malaysia Pahang, 26300, Kuantan, Pahang, Malaysia
  • H. W. Yussof Faculty of Chemical & Natural Resources Engineering, Universiti Malaysia Pahang, 26300, Kuantan, Pahang, Malaysia
  • M. N. Abu Seman Faculty of Chemical & Natural Resources Engineering, Universiti Malaysia Pahang, 26300, Kuantan, Pahang, Malaysia
  • A. W. Mohammad Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia

DOI:

https://doi.org/10.11113/jt.v78.10049

Keywords:

Thin-film composite membrane, interfacial polymerization, curing time, pore size, effective thickness/porosity

Abstract

Polyester thin film composite nanofiltration membranes were synthesized on the polyethersulfone (PES) support via the interfacial polymerization between triethanolamine (TEOA) and trimesoyl chloride (TMC). Here we report the effect of curing time in the interfacial polymerization process on membrane properties like pore size and effective thickness/porosity. The membrane properties were determined based on the uncharged solute permeation test and the hypothetical mechanistic structure (pore size, effective thickness/porosity) was determined using Donnan steric pore flow model (DSPM). This study also provides information on the effect of curing time on water permeability. From the 2 minute point to 10 minute point, the membranes pore sizes were reduced and negligible changes to effective thickness/porosity suggest the occurrence of additional cross-linking reaction between aqueous and organic monomers.

References

Siti Sabrina, M. S., Roshanida, A. S. and Norzita, N. 2013. Pretreatment of Oil Palm Fronds for Improving Hemicelluloses Content for Higher Recovery of Xylose. Jurnal Teknologi. 2: 39-42.

Zahari, M. A. K. M., Abdullah, S. S. S., Roslan, A. M., Ariffin, H., Shirai, Y. and Hassan, M. A. 2014. Efficient Utilization of Oil Palm Frond for Bio-based Products and Biorefinery. Journal of Cleaner Production. 65: 252-260.

Hassan, O., Ling, T. P., Maskat, M. Y., Illias, R. M., Badri, K., Jahim, J. and Mahadi, N. M. 2013. Optimization of Pretreatments for The Hydrolysis of Oil Palm Empty Fruit Bunch Fiber (EFBF) Using Enzyme Mixtures. Biomass and Bioenergy. 56: 137-146.

Feng, Y. M., Chang, X. L., Wang, W. H. and Ma, R. Y. 2009. Separation of Galacto-oligosaccharides Mixture by Nanofiltration. Journal of the Taiwan Institute of Chemical Engineers. 40(3): 326-332.

Sjoman, E., Manttari, M., Nystrom, M., Koivikko, H. and Heikkila, H. 2007. Separation of Xylose from Glucose By Nanofiltration From Concentrated Monosaccharide Solutions. Journal of Membrane Science. 292(1-2): 106-115.

Sjoman, E., Manttari, M., Nystrom, M., Koivikko, H. and Heikkila, H. 2008. Xylose Recovery by Nanofiltration from Different Hemicellulose Hydrolyzate Feeds. Journal of Membrane Science. 310(1-2): 268-277.

Mah, K. H., Yussof, H. W., Abu Seman, M. N. and Mohammad, A.W. 2016. Separation of Xylose Using a Thin-film Composite Nanofiltration Membrane: Screening of Interfacial Polymerization Factors. RSC Advances. 6: 69454-69464.

Ghosh, A. K., Jeong, B.-H., Huang, X. and Hoek, E. M. V. 2008 Impacts of Reaction and Curing Conditions On Polyamide Composite Reverse Osmosis Membrane Properties. Journal of Membrane Science. 311(1-2): 34-45.

Rangarajan, R., Desai, N. V., Daga, S. L., Joshi, S. V., Prakash Rao, A., Shah, V. J., Trivedi, J. J., Devmurari, C. V., Singh, K., Bapat, P. S., Raval, H. D., Jewrajka, S. K., Saha, N. K., Bhattacharya, A., Singh, P. S., Ray, P., Trivedi, G. S., Pathak, N., Reddy, A. V. R. 2011. Thin Film Composite Reverse Osmosis Membrane Development and Scale Up at CSMCRI, Bhavnagar. Desalination. 282: 68-77.

Rao, A. P., Desai, N. V. and Rangarajan, R. 1997. Interfacially Synthesized Thin Film Composite RO Membranes for Seawater Desalination. Journal of Membrane Science. 124(2): 263-272.

Rao, A. P., Joshi, S., Trivedi, J., Devmurari, C. and Shah, V. 2003. Structure–performance Correlation of Polyamide Thin Film Composite Membranes: Effect of Coating Conditions On Film Formation. Journal of Membrane Science. 211(1): 13-24.

Zhao, J., Wang, Z., Wang, J. and Wang, S. 2006. Influence of Heat-treatment On CO2 Separation Performance of Novel Fixed Carrier Composite Membranes Prepared by Interfacial Polymerization. Journal of Membrane Science. 283(1-2): 346-356.

Mah, K. H., Yussof, H. W., Abu Seman, M. N. and Mohammad, A. W. 2016. Thin-film Composite Nanofiltration Membrane: A Study On the Curing Time and Its Performance Evaluation. International Journal of Biomass & Renewables. 5(1): 19-25.

Tang, B., Huo, Z. and Wu, P. 2008. Study On a Novel Polyester Composite Nanofiltration Membrane by Interfacial Polymerization of Triethanolamine (TEOA) And Trimesoyl Chloride (TMC): I. Preparation, Characterization and Nanofiltration Properties Test of Membrane. Journal of Membrane Science. 320(1): 198-205.

Jalanni, N. A., Abu Seman, M. N. and Faizal, C. K. M. 2013. Investigation of New Polyester Nanofiltration (NF) Membrane Fouling with Humic Acid Solution. Jurnal Teknologi. 65(4): 69-72.

Bowen, W., Mohammad, A. W. and Hilal, N. 1997. Characterisation of Nanofiltration Membranes for Predictive Purposes—use of Salts, Uncharged Solutes and Atomic Force Microscopy. Journal of Membrane Science. 126(1): 91-105.

Bowen, W. and Mohammad, A. W. 1998. Characterization and Prediction of Nanofiltration Membrane Performance-a General Assessment. Chemical Engineering Research and Design. 76(8): 885-893.

Bowen, W. and Sharif, A.O. 1994. Transport Through Microfiltration Membranes—Particle Hydrodynamics and Flux Reduction. Journal of Colloid and Interface Science. 168(2): 414-421.

Reingruber, H., Zankel, A., Mayrhofer, C. and Poelt, P. 2012. A New in Situ Method for The Characterization of Membranes in A Wet State in The Environmental Scanning Electron Microscope. Journal of Membrane Science. 399-400: 86-94.

Song, Y., Sun, P., Henry, L. L. and Sun, B. 2005. Mechanisms of Structure and Performance Controlled Thin Film Composite Membrane Formation Via Interfacial Polymerization Process. Journal of Membrane Science. 251: 67-79.

Hermans, S., Bernstein, R., Volodin, A. and Vankelecom, I. F. J. 2015. Study of Synthesis Parameters and Active Layer Morphology of Interfacially Polymerized Polyamide-polysulfone Membranes. Reactive and Functional Polymers. 86: 199-208.

Pinnau, I. and Freeman, B. D. 1999. Formation and Modification of Polymeric Membranes: Overview. Membrane Formation and Modification. 744: 1.

Ismail, A. F., Padaki, M., Hilal, N., Matsuura, T. and Lau, W. J. 2015. Thin Film Composite Membrane - Recent Development and Future Potential. Desalination. 356: 140-148.

Bruins, P. F. 1976. Unsaturated Polyester Technology. CRC Press.

Cao, X. and Lee, L. J. 2003. Control of Shrinkage and Residual Styrene Of Unsaturated Polyester Resins Cured At Low Temperatures: I. Effect Of Curing Agents. Polymer. 44(6): 1893-1902.

Shih, W. 1994. Shrinkage Modeling of Polyester Shrink Film. Polymer Engineering & Science. 34(14): 1121-1128.

Downloads

Published

2016-11-28

Issue

Section

Science and Engineering

How to Cite

EFFECT OF CURING TIME ON THE PORE SIZE AND EFFECTIVE THICKNESS/POROSITY OF POLYESTER THIN FILM COMPOSITE NANOFILTRATION MEMBRANES. (2016). Jurnal Teknologi, 78(12). https://doi.org/10.11113/jt.v78.10049