EFFECT OF PMMA-MWNTS LOADING ON CO2 SEPARATION PERFORMANCE OF THIN FILM NANOCOMPOSITE MEMBRANE

Authors

  • Wong Kar Chun Advanced Membrane Technology Research Centre, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Johor, Malaysia
  • Goh Pei Sean Advanced Membrane Technology Research Centre, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Johor, Malaysia
  • Ahmad Fauzi Ismail Advanced Membrane Technology Research Centre, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Johor, Malaysia

DOI:

https://doi.org/10.11113/jt.v78.10065

Keywords:

Thin film nanocomposite, interfacial polymerization, multi-walled carbon nanotubes

Abstract

Nanocomposite membrane, especially the thin film nanocomposite (TFN) fabricated via interfacial polymerization (IP) is a relatively new class of membrane which features good separation performance and practical processing. This study investigated on the effects of multi-walled carbon nanotubes (MWNTs) loading on the gas separation performance of the resultant TFNs. TFNs were tested with pure CO2, N2 and CH4 gases at feed pressure of 2 bar. The findings from this study suggested that the optimum fillers loading was around 0.25 g/L in the coating solution which gives TFN with CO2 permeance of 53.5 gas permeation unit (GPU) (12% higher than base membrane without filler), CO2/N2 selectivity of 61 and CO2/CH4 selectivity of 35. The enhancement in CO2 permeance without sacrificing the membrane selectvities was attributed to the good dispersion and compatibility of the MWNTs with the polymer matrix while the nanotubes serve as rapid diffusion channels to facilitate transport of gases. TFN embedded with polymethyl methacrylate (PMMA)-MWNTs showed potential for low pressure carbon capture and storage application.  

References

Sanders, D. F., Smith, Z. P., Guo, R., Robeson, L. M., McGrath, J. E., Paul, D. R., & Freeman, B. D. 2013. Energy-Efficient Polymeric Gas Separation Membranes For A Sustainable Future: A Review. Polymer. 54: 4729-4761.

Goh, P. S. & Ismail, A. F. 2015. Graphene-based Nanomaterial: The State-Of-The-Art Material For Cutting Edge Desalination Technology. Desalination. 356: 115-128.

Sorribas, S., Gorgojo, P., & Livingston, A.G. 2013. High Flux Thin Film Nanocomposite Membranes Based on Metal − Organic Frameworks for Organic Solvent Nano filtration. Journal of The American Chemical Society. 135(40): 15201-15208.

Yu, X., Wang, Z., Zhao, J., Yuan, F., Li, S., Wang, J., & Wang, S. 2011. An Effective Method to Improve the Performance of Fixed Carrier Membrane via Incorporation of CO2-selective Adsorptive Silica Nanoparticles. Chinese Journal of Chemical Engineering. 19: 821-832.

Yu, X., Wang, Z., Wei, Z., Yuan, S., Zhao, J., Wang, J., & Wang, S. 2010. Novel Tertiary Amino Containing Thin Film Composite Membranes Prepared By Interfacial Polymerization For CO2 Capture. Journal of Membrane Science. 362: 265-278.

De Sitter, K., Dotremont, C., Genné, I., & Stoops, L. 2014. The Use Of Nanoparticles As Alternative Pore Former For The Production Of More Sustainable Polyethersulfone Ultrafiltration Membranes. Journal of Membrane Science. 471: 168-178.

Ahmad, A. L., Jawad, Z. A., Low, S. C., & Zein, S. H. S. 2014. A Cellulose Acetate/Multi-Walled Carbon Nanotube Mixed Matrix Membrane For CO2/N2 Separation. Journal of Membrane Science. 451: 55-66.

Lua, A. C. & Shen, Y. 2013. Preparation And Characterization Of Polyimide-Silica Composite Membranes And Their Derived Carbon-Silica Composite Membranes For Gas Separation. Chemical Engineering Journal. 220: 441-451.

Aroon, M. A., Ismail, A. F., Montazer-Rahmati, M. M., & Matsuura, T. 2010. Effect Of Chitosan As A Functionalization Agent On The Performance And Separation Properties Of Polyimide/Multi-Walled Carbon Nanotubes Mixed Matrix Flat Sheet Membranes. Journal of Membrane Science. 364: 309-317.

Sanip, S. M., Ismail, A. F., Goh, P. S., Soga, T., Tanemura, M., & Yasuhiko, H. 2011. Gas Separation Properties Of Functionalized Carbon Nanotubes Mixed Matrix Membranes. Separation and Purification Technology. 78: 208-213.

Khan, M. M., Filiz, V., Bengtson, G., Shishatskiy, S., Rahman, M.M., Lillepaerg, J., & Abetz, V. 2013. Enhanced Gas Permeability By Fabricating Mixed Matrix Membranes Of Functionalized Multiwalled Carbon Nanotubes And Polymers Of Intrinsic Microporosity (PIM). Journal of Membrane Science. 436: 109-120.

Kim, S., Chen, L., Johnson, J. K., & Marand, E. 2007. Polysulfone And Functionalized Carbon Nanotube Mixed Matrix Membranes For Gas Separation: Theory And Experiment. Journal of Membrane Science. 294: 147-158.

Ackerman, D. M., Skoulidas, A. I., Sholl, D. S., & Karl Johnson, J. 2003. Diffusivities of Ar and Ne in Carbon Nanotubes. Molecular Simulation. 29: 677-684.

Chen, H., Johnson, J. K., & Sholl, D. S. 2006. Transport Diffusion Of Gases Is Rapid In Flexible Carbon Nanotubes. Journal of Physical Chemistry B. 110: 1971-1975.

Malikov, E. Y., Muradov, M. B., Akperov, O. H., Eyvazova, G. M., Puskás, R., Madarász, D., Nagy, L., Kukovecz, Ã., & Kónya, Z. 2014. Synthesis And Characterization Of Polyvinyl Alcohol Based Multiwalled Carbon Nanotube Nanocomposites. Physica E: Low-dimensional Systems and Nanostructures. 61: 129-134.

Jiang, M.-J., Dang, Z.-M., Yao, S.-H., & Bai, J. 2008. Effects Of Surface Modification Of Carbon Nanotubes On The Microstructure And Electrical Properties Of Carbon Nanotubes/Rubber Nanocomposites. Chemical Physics Letters. 457: 352-356.

de Lannoy, C.-F., Soyer, E., & Wiesner, M. R. 2013. Optimizing Carbon Nanotube-Reinforced Polysulfone Ultrafiltration Membranes Through Carboxylic Acid Functionalization. Journal of Membrane Science. 447: 395-402.

Avilés, F., Sierra-Chi, C. a., Nistal, a., May-Pat, a., Rubio, F., & Rubio, J. 2013. Influence Of Silane Concentration On The Silanization Of Multiwall Carbon Nanotubes. Carbon. 57: 520-529.

Cong, H., Zhang, J., Radosz, M., & Shen, Y. 2007. Carbon Nanotube Composite Membranes Of Brominated Poly(2,6-diphenyl-1,4-phenylene oxide) for Gas Separation. Journal of Membrane Science. 294: 178-185.

Wong, K. C., Goh, P. S., Ng, B. C., & Ismail, A. F. 2015. Thin Film Nanocomposite Embedded With Polymethyl Methacrylate Modified Multi-Walled Carbon Nanotubes For CO2 Removal. RSC Adv. 5: 31683-31690.

Wong, K. C., Goh, P. S., & Ismail, A. F. 2015. Gas Separation Performance Of Thin Film Nanocomposite Membranes Incorporated With Polymethyl Methacrylate Grafted Multi-Walled Carbon Nanotubes. International Biodeterioration and Biodegradation. 102: 339-345.

Xia, H., Wang, Q., & Qiu, G. 2003. Polymer-Encapsulated Carbon Nanotubes Prepared through Ultrasonically Initiated In Situ Emulsion Polymerization. Chemistry of Materials. 15: 3879-3886.

Wu, H. X., Qiu, X. Q., Cao, W. M., Lin, Y. H., Cai, R. F., & Qian, S. X. Polymer-wrapped Multiwalled Carbon Nanotubes Synthesized Via Microwave-Assisted In Situ Emulsion Polymerization And Their Optical Limiting Properties. Carbon. 45: 2866-2872.

Avilés, F., Cauich-Rodríguez, J.V., Moo-Tah, L., May-Pat, A., & Vargas-Coronado, R. 2009. Evaluation Of Mild Acid Oxidation Treatments For MWCNT Functionalization. Carbon. 47: 2970-2975.

Dong, C., Campell, A. S., Eldawud, R., Perhinschi, G., Rojanasakul, Y., & Dinu, C. Z. 2013. Effects Of Acid Treatment On Structure, Properties And Biocompatibility Of Carbon Nanotubes. Applied Surface Science. 264: 261-268.

Sahoo, N. G., Rana, S., Cho, J. W., Li, L., & Chan, S. H. 2010. Polymer Nanocomposites Based On Functionalized Carbon Nanotubes. Progress in Polymer Science. 35: 837-867.

Jimenez-Solomon, M. F., Gorgojo, P., Munoz-Ibanez, M., & Livingston, A. G. 2013. Beneath The Surface: Influence Of Supports On Thin Film Composite Membranes By Interfacial Polymerization For Organic Solvent Nanofiltration. Journal of Membrane Science. 448: 102-113.

Ghosh, A. K., Jeong, B. H., Huang, X., & Hoek, E. M. V 2008. Impacts Of Reaction And Curing Conditions On Polyamide Composite Reverse Osmosis Membrane Properties. Journal of Membrane Science. 311: 34-45.

Baroña, G.N.B., Lim, J., Choi, M., & Jung, B. 2013. Interfacial Polymerization Of Polyamide-Aluminosilicate SWNT Nanocomposite Membranes For Reverse Osmosis. Desalination. 325: 138-147.

Ge, L., Wang, L., Du, A., Hou, M., Rudolph, V., & Zhu, Z. 2012. Vertically-aligned Carbon Nanotube Membranes For Hydrogen Separation. RSC Advances. 2: 5329.

Ge, L., Zhu, Z., & Rudolph, V. 2011. Enhanced Gas Permeability By Fabricating Functionalized Multi-Walled Carbon Nanotubes And Polyethersulfone Nanocomposite Membrane. Separation and Purification Technology. 78: 76-82.

Shen, J. N., Yu, C. C., Ruan, H. M., Gao, C. J., & Van der Bruggen, B. 2013. Preparation And Characterization Of Thin-Film Nanocomposite Membranes Embedded With Poly(Methyl Methacrylate) Hydrophobic Modified Multiwalled Carbon Nanotubes By Interfacial Polymerization. Journal of Membrane Science. 442: 18-26.

Goh, P.S.S., Ng, B.C.C., Ismail, A.F.F., Aziz, M., & Hayashi, Y. 2012. Pre-treatment of Multi-Walled Carbon Nanotubes For Polyetherimide Mixed Matrix Hollow Fiber Membranes. Journal of Colloid and Interface Science. 386: 80-87.

Yong, H. H., Park, H. C., Kang, Y. S., Won, J., & Kim, W. N. 2001. Zeolite-filled Polyimide Membrane Containing 2,4,6-Triaminopyrimidine. Journal of Membrane Science. 188: 151-163.

Downloads

Published

2016-11-28

Issue

Section

Science and Engineering

How to Cite

EFFECT OF PMMA-MWNTS LOADING ON CO2 SEPARATION PERFORMANCE OF THIN FILM NANOCOMPOSITE MEMBRANE. (2016). Jurnal Teknologi, 78(12). https://doi.org/10.11113/jt.v78.10065