• A. Nazerah Universiti Kuala Lumpur - Malaysia Institute of Chemical and Bioengineering Technology (UniKL - MICET), Lot 1988, Kawasan Perindustrian Bandar Vendor, Alor Gajah, Melaka, Malaysia
  • A. F. Ismail Advanced Membrane Technology Research Centre (AMTEC), Faculty of Petroleum and Renewable Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Juhana Jaafar Advanced Membrane Technology Research Centre (AMTEC), Faculty of Petroleum and Renewable Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia



Biofilm, antimicrobial properties, nanoparticles, surface modification


Biofouling has become concern issue in all pressure driven membrane technology. The attachment of microorganism to the membrane surface gave an effect to membrane life span, increased operating and maintenance costs. Therefore, this review is focusing on the development of nanocomposite membrane based on improving bactericidal properties to suppress the activity of attached organisms in order to minimize biofilm formation. This approach was done with incorporation of biocidal nanomaterials into a polymeric membrane matrix by include metal-based nanoparticles such as Titanium dioxide (TiO2), Copper (Cu), Silver (Ag), Zinc oxide (ZnO); carbon-based nanomaterials including graphene oxide (GO) and carbon nanotubes (CNTs) and hybrid nanomaterials. Current constraints and prospective by the use of nanomaterials are discussed in order to increase antibacterial property for long term application for further implementation in membrane systems from the views of water and wastewater treatment applications.


Xiao. G., X. Zhang, W. Zhang, S. Zhang, H. Su, and T. Tan. 2015. Visible-light-mediated Synergistic Photocatalytic Antimicrobial Effects And Mechanism Of Ag-nanoparticles@chitosan-TiO2 Organic-Inorganic Composites For Water Disinfection. Applied. Catalst. B Environment. 170-171: 255-262.

Reddy D. H. K and S. M. Lee. 2012. Water Pollution and Treatment Technologies. Journal Analytical and Environmental Toxicology. 2(5): 5-6.

Jury.W.a and H. Vaux. 2005. The Role Of Science In Solving The World’s Emerging Water Problems. Proceedings of the National Academy of Sciences of the United States of America. 102(44): 15715-15720.

Baker. R. 1995. Membrane Technology And Applications. Second edition. England: West Sussex.

Mansouri, J., Simon Harrison, and V. Chen. 2010. Strategies For Controlling Biofouling In Membrane Filtration Systems : Challenges And Challenges And Opportunities. Journal of Materials Chemistry. 20: 4567-4586.

Cheng, G., Z. Zhang, S. Chen, J. D. Bryers, and S. Jiang. 2007. Inhibition Of Bacterial Adhesion And Biofilm Formation On Zwitterionic Surfaces. Biomaterials. 28(29): 4192-4199.

Zhao, Y. H., X. Y. Zhu, K. H. Wee, and R. Bai. 2010. Achieving Highly Effective Non-Biofouling Performance For Polypropylene Membranes Modified By UV-Induced Surface Graft Polymerization Of Two Oppositely Charged Monomers. Journal Physical. Chemistry B. 114(7): 2422-2429.

Chiang, Y. C., Y. Chang, C. J. Chuang, and R. C. Ruaan. 2012. A Facile Zwitterionization In The Interfacial Modification Of Low Bio-Fouling Nanofiltration Membranes. Journal Membrane Science. 389: 76-82.

Huang, J., H. Wang, and K. Zhang. 2014. Modification of PES membrane with Ag-SiO2: Reduction Of Biofouling And Improvement Of Filtration Performance. Desalination. 336(1): 8-17.

Chae. S. R., S. Wang, Z. D. Hendren, M. R. Wiesner, Y. Watanabe, and C. K. Gunsch. 2009. Effects Of Fullerene Nanoparticles On Escherichia Coli K12 Respiratory Activity In Aqueous Suspension And Potential Use For Membrane Biofouling Control. Journal Membrane Science. 329(1-2): 68-74.

Yu, C., J. Wu, A. E. Contreras, and Q. Li. 2012. Control of Nanofiltration Membrane Biofouling By Pseudomonas Aeruginosa Using D-Tyrosine. Journal Membrane Science 423-424: 487-494.

Dong xi, L., H. Wei Yang, S. Ting Liu, X. Mao Wang, and Y. F. Xie. 2015. Fabrication And Anti-Biofouling Properties Of Alumina And Zeolite Nanoparticle Embedded Ultrafiltration Membranes. Desalination. 365: 70-78.

Bae, T. H., and T. M. Tak. 2005. Interpretation Of Fouling Characteristics Of Ultrafiltration Membranes During The Filtration Of Membrane Bioreactor Mixed Liquor. Journal Membrane Science. 264(1-2): 151-160.

Li. J. F., Z. L. Xu, H. Yang, L. Y. Yu, and M. Liu. 2009. Effect Of TiO2 Nanoparticles On The Surface Morphology And Performance Of Microporous PES Membrane. Applied Surface. Science. 255(9): 4725-4732.

Sawada, I., R. Fachrul, T. Ito, Y. Ohmukai, T. Maruyama, and H. Matsuyama. 2012. Development Of A Hydrophilic Polymer Membrane Containing Silver Nanoparticles With Both Organic Antifouling And Antibacterial Properties. Journal Membrane Science. 387-388(1): 1-6.

Chen, Y., Y. Zhang, H. Zhang, J. Liu, and C. Song. 2013. Biofouling Control Of Halloysite Nanotubes-Decorated Polyethersulfone Ultrafiltration Membrane Modified With Chitosan-Silver Nanoparticles. Chemical Engineering Journal. 228: 12–20.

Jin. J.-C., Z.-Q. Xu, P. Dong, L. Lai, J.-Y. Lan, F.-L. Jiang, and Y. Liu. 2015. One-Step Synthesis Of Silver Nanoparticles Using Carbon Dots As Reducing And Stabilizing Agents And Their Antibacterial Mechanisms. Carbon N. Y. 94: 129-141.

Nguyen, T., F. A. Roddick, and L. Fan. 2012. Biofouling Of Water Treatment Membranes: A Review Of The Underlying Causes, Monitoring Techniques And Control Measures. Membranes (Basel). 2(4): 804-840.

Michelle, Chapman, and Wilbert. 1997. Enhancement of Membrane Fouling Resistance Through Water Treatment. Technology. Progress. Report. 22( 22): 1-156.

Kochkodan, V., S. Tsarenko, N. Potapchenko, V. Kosinova, and V. Goncharuk. 2008. Adhesion Of Microorganisms To Polymer Membranes: A Photobactericidal Effect Of Surface Treatment With TiO2. Desalination. 220(1-3): 380-385.

Mauter, M. S., Y. Wang, K. C. Okemgbo, C. O. Osuji, E. P. Giannelis, and M. Elimelech. 2011. Antifouling Ultrafiltration Membranes Via Post-Fabrication Grafting Of Biocidal Nanomaterials. ACS Applied Material Interfaces. 3( 8): 2861-2868.

Abou El-Nour. K. M. M., A. Eftaiha, A. Al-Warthan, and R. A. A. Ammar. 2010. Synthesis And Applications Of Silver Nanoparticles. Arabian Journal of Chemistry. 3(3): 135-140.

Rahimpour. A., M. Jahanshahi, B. Rajaeian, and M. Rahimnejad. 2011. TiO2 Entrapped Nano-composite PVDF/SPES Membranes: Preparation, Characterization, Antifouling And Antibacterial Properties. Desalination. 278(1-3): 343-353.

Ren. G., D. Hu, E. W. C. Cheng, M. A. Vargas-Reus, P. Reip, and R. P. Allaker. 2009. Characterisation Of Copper Oxide Nanoparticles For Antimicrobial Applications. International Journal of Antimicrobial Agents. 33(6): 587-590.

Kang. S., M. Pinault, L. D. Pfefferle, and M. Elimelech. 2007. Single-walled carbon Nanotubes Exhibit Strong Antimicrobial Activity. Langmuir. 23(17): 8670-8673.

Zou. X., L. Zhang, Z. Wang, and Y. Luo. 2016. Mechanisms of the Antimicrobial Activities of Graphene Materials. Journal of the American Chemical Society.138: 2064-2077.

Rahaman. M. S., H. Thérien-Aubin, M. Ben-Sasson, C. K. Ober, M. Nielsen, and M. Elimelech. 2014. Control Of Biofouling On Reverse Osmosis Polyamide Membranes Modified With Biocidal Nanoparticles And Antifouling Polymer Brushes. Journal Material Chemistry. B. 2(12): 1724-1732..

Zodrow. K., L. Brunet, S. Mahendra, D. Li, A. Zhang, Q. Li, and P. J. J. Alvarez. 2009. Polysulfone Ultrafiltration Membranes Impregnated With Silver Nanoparticles Show Improved Biofouling Resistance And Virus Removal. Water Resource. 43(3): 715-723.

Morones. M. Y., J. L. Elichiguerra, A. Camacho, K. Holt, J. B. Kouri, J. T. Ramirez. 2005. The Bactericidal Effect Of Silver Nanoparticles. Nanotechnology.16(10): 2346-2353.

Basri, H., A. F. Ismail, and M. Aziz. 2011. Polyethersulfone (PES)-silver Composite UF Membrane: Effect Of Silver Loading And PVP Molecular Weight On Membrane Morphology And Antibacterial Activity. Desalination. 273(1): 72-80.

Yin, V., Y. Yang, Z. Hu, and B. Deng. 2013. Attachment Of Silver Nanoparticles (AgNPs) Onto Thin-Film Composite (TFC) Membranes Through Covalent Bonding To Reduce Membrane Biofouling. Journal Membrane Science. 441: 73-82

Ben-Sasson, M., K. R. Zodrow, Q. Genggeng, Y. Kang, E. P. Giannelis, and M. Elimelech. 2014. Surface Functionalization Of Thin-Film Composite Membranes With Copper Nanoparticles For Antimicrobial Surface Properties. Environmental Science and Technology. 48(1): 384-393.

Kim. S. H., S. Y. Kwak, B. H. Sohn, and T. H. Park. 2003. Design of TiO2 nanoparticle Self-Assembled Aromatic Polyamide Thin-film-composite (TFC) Membrane As An Approach To Solve Biofouling Problem. Journal Membrane. Science. 211(1): 157-165.

Perreaul, F., M. E. Tousley, and M. Elimelech. 2014. Thin-Film Composite Polyamide Membranes Functionalized with Biocidal Graphene Oxide Nanosheets. Environmental Science and Technology Letter. 1(1): 71-76.

Tiraferri, A., C. D. Vecitis, and M. Elimelech. 2011. Covalent Binding Of Single-Walled Carbon Nanotubes To Polyamide Membranes For Antimicrobial Surface Properties. ACS Applied Material Interfaces. 3(8): 2869-2877.

Kim, H. J., Y. Baek, K. Choi, D. G. Kim, H. Kang, Y. S. Choi, J. Yoon, and J. C. Lee. 2014. The Improvement Of Antibiofouling Properties Of A Reverse Osmosis Membrane By Oxidized CNTs. RSC Advance. 4(62): 32802-32810.

Shen, L., S. Xiong, and Y. Wang. 2016. Graphene Oxide Incorporated Thin-Film Composite Membranes For Forward Osmosis Applications. Chemical Engneering. Science. 143: 194-205.

Kuilla, T., S. Bhadra, D. H. Yao, N. H. Kim, S. Bose, and J. H. Lee. 2010. Recent Advances In Graphene Based Polymer Composites. Progress Polymer Science. 35(11): 1350-1375.

Xia, S. and M. Ni. 2014. Preparation Of Poly(Vinylidene Fluoride) Membranes With Graphene Oxide Addition For Natural Organic Matter Removal. Journal Membrane Science. 473: 54-62.

Liu, S., T. H. Zeng, M. Hofmann, E. Burcombe, J. Wei, R. Jiang, J. Kong, and Y. Chen. 2011. Antibacterial Activity Of Graphite, Graphite Oxide, Graphene Oxide, And Reduced Graphene Oxide: Membrane And Oxidative Stress. ACS Nano. 5(9): 6971-6980.

Akhavan, O. and E. Ghaderi. 2010. Toxicity Of Graphene And Graphene Oxide Nanowalls Against Bacteria. ACS Nano. 4(10): 5731-5736.

Liao, C., P. Yu, J. Zhao, L. Wang, and Y. Luo. 2011. Preparation and Characterization Of Nay/PVDF Hybrid Ultrafiltration Membranes Containing Silver Ions As Antibacterial Materials. Desalination. 272(1-3): 59-65.

Huang. J., G. Arthanareeswaran, and K. Zhang. 2012. Effect Of Silver Loaded Sodium Zirconium Phosphate (nanoAgZ) Nanoparticles Incorporation On PES Membrane Performance. Desalination. 285: 100-107.

Kim, E. S., G. Hwang, M. Gamal El-Din, and Y. Liu. 2012. Development Of Nanosilver And Multi-Walled Carbon Nanotubes Thin-Film Nanocomposite Membrane For Enhanced Water Treatment. Journal Membrane Science. 394-395: 37-48.

Li, B., X. Liu, C. Cao, F. Meng, Y. Dong, T. Cui, and C. Ding. 2008. Preparation And Antibacterial Effect Of Plasma Sprayed Wollastonite Coatings Loading Silver. Appied Surace Science. 255(2): 452-454.

Ismail, A. F., S. A. Hashemifard, and T. Matsuura. 2011. Facilitated transport Effect Of Ag+ Ion Exchanged Halloysite Nanotubes On The Performance Of Polyetherimide Mixed Matrix Membrane For Gas Separation. Journal Membrane Science. 379(1-2): 378-385.

X. Zhu, R. Bai, K. H. Wee, C. Liu, and S. L. Tang. 2010. Membrane Surfaces Immobilized With Ionic Or Reduced Silver And Their Anti-Biofouling Performances. Journal Membrane Science. 363:(1-2): 278-286.

Zhang, J., Y. Zhang, Y. Chen, L. Du, B. Zhang, H. Zhang, J. Liu, and K. Wang. 2012. Preparation And Characterization Of Novel Polyethersulfone Hybrid Ultrafiltration Membranes Bending With Modified Halloysite Nanotubes Loaded With Silver Nanoparticles. Industry Engineering Chemistry Research. 51(7): 3081-3090.

Gunawan, V., C. Guan, X. Song, Q. Zhang, S. S. J. Leong, C. Tang, Y. Chen, M. B. Chan-Park, M. W. Chang, K. Wang, and R. Xu. 2011. Hollow Fiber Membrane Decorated With Ag/MWNTs: Toward Effective Water Disinfection And Biofouling Control. ACS Nano. 5(12): 10033-10040.

Haider, M. S., G. N. Shao, S. M. Imran, S. S. Park, N. Abbas, M. S. Tahir, M. Hussain, W. Bae, and H. T. Kim. 2016. Aminated Polyethersulfone-Silver Nanoparticles (AgNPs-APES) Composite Membranes With Controlled Silver Ion Release For Antibacterial And Water Treatment Applications. Material Science and. Engineering. C. 62: 732-745.






Science and Engineering

How to Cite