One Step Cosine–Taylorlike Method For Solving Stiff Equations

Authors

  • Rokiah @ Rozita Ahmad
  • Nazeeruddin Yaacob

DOI:

https://doi.org/10.11113/jt.v53.104

Abstract

Makalah ini membincangkan penghasilan kaedah tak tersirat bak Cosine–Taylor untuk menyelesaikan persamaan pembezaan biasa kaku. Perumusannya menghasilkan pengenalan kepada satu rumus baru bagi penyelesaian berangka bagi persamaan pembezaan biasa kaku. Kaedah baru ini memerlukan penghitungan tambahan yakni melakukan beberapa terbitan bagi fungsi yang terlibat. Walau bagaimanapun, keputusan yang diperoleh adalah lebih baik berbanding hasil yang didapati apabila menggunakan kaedah tak tersirat Runge–Kutta peringkat–4 dan kaedah tersirat Adam–Bashfiorth–Moulton (ABM). Perbandingan yang dibuat dengan kaedah bak Sine–Taylor menunjukkan kejituan bagi kedua–dua kaedah adalah hampir setara. Kata kunci: Kaedah tak tersirat; persamaan pembezaan biasa kaku; Runge–Kutta; kaedah tersirat; Adam–Bashforth–Moulton; bak Sine–Taylor This paper discusses the derivation of an explicit Cosine–Taylorlike method for solving stiff ordinary differential equations. The formulation has resulted in the introduction of a new formula for the numerical solution of stiff ordinary differential equations. This new method needs an extra work in order to solve a number of differentiations of the function involved. However, the result produced is better than the results from the explicit classical fourth–order Runge–Kutta (RK4) and the implicit Adam–Bashforth–Moulton (ABM) methods. When compared with the previously derived Sine–Taylorlike method, the accuracy for both methods is almost equivalent. Key words: Explicit method; stiff ordinary differential equations; Runge–Kutta; implicit method; Adam–Bashforth–Moulton; Sine–Taylorlike

Downloads

Published

2012-01-20

Issue

Section

Science and Engineering

How to Cite

One Step Cosine–Taylorlike Method For Solving Stiff Equations. (2012). Jurnal Teknologi (Sciences & Engineering), 53(1), 41–47. https://doi.org/10.11113/jt.v53.104