APPLICATION OF MATLAB-BASED INTERFACE FOR THE CONTROL OF MICROBIOREACTOR OPERATION

Authors

  • Muhd Nazrul Hisham Zainal Alam School of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Tan Jia Hou School of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Abbas Kouzani School of Engineering, Deakin University, Waurn Ponds, VIC 3216, Australia
  • Abdul Rashid Husain School of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

DOI:

https://doi.org/10.11113/jt.v80.10413

Keywords:

Microbioreactor, Arduino, MATLAB, Simulink, automation

Abstract

This work presents the use of Arduino-based embedded system interfaced to MATLAB software packages as an alternative cost-effective solution for the control of the microbioreactor operation. In the presented work, a microbioreactor platform with a working volume of approximately 1.5 mL have been fabricated using a low-cost poly (methylmethacrylate) (PMMA) and poly(dimethylsiloxane) (PDMS) polymers. The reactor have been integrated with stirring control, fuzzy logic temperature control, and aeration feature via a miniature air compressor. Control program of the microbioreactor system was established using Simulink, MATLAB software were executed by interfacing the program with Arduino Mega 2560 microcontroller for input and output of signals. Numbers of experimentation were performed to validate and demonstrate the potential of the proposed method. Satisfactorily degree of control and supervision was achieved (+ 1-3% of the set-point values).  The entire microbioreactor system can be operated stably for a least 48 hours. The work demonstrated the usefulness of MATLAB software in establishing a microbioreactor operating interface that consisted merely few Simulink program block sets and executed on a low-cost Arduino board.

Author Biography

  • Muhd Nazrul Hisham Zainal Alam, School of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
    Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia.

References

Schapper D., Zainal Alam, M. N. H., Szita, N., Lantz, A. E., Gernaey, K. V. 2009. Application of Microbioreactors in Fermentation Process Development: A Review. Anal. Bioanal. Chem. 395: 679-695.

Betts, J. I., Baganz, F. 2006. Miniature Bioreactors: Current Practices and Future Opportunities. Microb. Cell Fact. 5:(21). doi: 10.1186/1475-2859-5-21.

Schäpper, D., Stocks, S. M., Szita, N., Lantz A. E., Gernaey, K. V. 2010. Development of a Single-use Microbioreactor for Cultivation of Microorganisms. Chem. Eng. J. 160: 891-898.

Lee, K. S., Boccazzi, P., Sinskey, A. J., Ram, R. J. 2011. Microfluidic Chemostat and Turbidostat with Flow Rate, Oxygen, and Temperature Control for Dynamic Continuous Culture. Lab Chip. 11: 1730-1739.

Halimoon, H., Husain, A. R., Zainal Alam, M. N. H. 2016. Aerobic Fermentation of Saccharomeyes cerevisae in a Miniature Bioreactor made of Low Cost Poly(methylmethacrylate) (PMMA) and Poly(dimethylsiloxane) (PDMS) Polymers. Sains Malays. 45(6): 969-976.

Zhang, Z., Perozziello, G., Boccazzi, P., Sinskey, A. J., Geschke, O., Jensen, K. F. 2007. Microbioreactors for Bioprocess Development. J. Assoc. Lab. Autom. 12: 143-151.

Bolic, A., Larsson, H., Hugelier S., Gernaey, K. V. 2016. A Flexible well-mixed Milliliter-scale Reactor with High Oxygen Transfer Rate for Microbial Cultivations. Chem. Eng. J. 303: 655-666.

Zanzotto, A., Szita, N., Boccazzi, P., Lessard, P., Sinskey, A. J., Jensen. K. F. 2004. Membrane-aerated Microbioreactor for High-throughput Bioprocessing. Biotechnol. Bioeng. 87: 243-254.

Zainal Alam, M. N. H., Schäpper, D. Gernaey, K. V. 2010. Embedded Resistance Wire as Heating Element for Temperature Control in Microbioreactors. J. Micromech. Microeng. 20: 055014. doi:10.1088/0960-1317/20/5/055014.

Buchenauer, A., Hofmann, M. C., Funke, M., Büchs J., Mokwa, W., Schnakenberg U. 2009. Microbioreactors for Fed-Batch Fermentations with Integrated Online Monitoring and Microfluidic Devices. Biosens. Bioelectron. 24: 1411-1416.

Morris, A. S., Langari, R. 2012. Chap. 5. Data Acquisition with LabVIEW, Measurement and Instrumentation. Academic Press, San Diego. 115-133.

Husain, A. R., Hadad, Y. Zainal Alam, M. N. H. 2016. Development of Low-cost Microcontroller-Based Interface for Data Acquisition and Control of Microbioreactor Operation. J. Assoc. Lab. Autom. 21(5): 660-670.

Guangpua, L., Yuchunb, G. 2012. The Application of MATLAB in Communication Theory. Procedia Eng. 29: 321-324.

Becker, H., Gaertner, C. 2008. Polymer Microfabrication Methods for Microfluidic Analytical Applications. Anal. Bioanal. Chem. 390(1): 89-111.

Candelas, F. A., García, G. J., Puente, S., Pomares, J., Jara, C. A., Pérez, J., Mira, D., Torres, F. 2015. Experiences on using Arduino for Laboratory Experiments of Automatic Control and Robotics. IFAC-Papers-On-Line. 48(29): 105-110.

Halimoon, H., Zainal Alam, M. N. H. 2013. A Low Cost Stirring Platform with Integrated Temperature Control Scheme for Microbioreactor Operation. J. Tek. (SciEng). 62: 1-8.

Maiti, T. K. 2006. A Novel Lead-wire-resistance Compensation Technique using Two-Wire Resistance Temperature Detector. J. IEEE Sensors. 6: 1454-1458.

Shuler, M. L., Kargi, F. 2002. Bioprocess Engineering: Basic Concepts. 2nd ed. Prentice Hall, New Jersey, US. 292-296.

Zhang, Z., Szita, N., Boccazzi, G., Sinskey, A. J., Jensen, K. F. 2005. A Well-mixed, Polymer-based Microbioreactor with Integrated Optical Measurements. Biotechnol. Bioeng. 93: 287-296.

McGinnis, D. F., Little, J. C. 2002. Predicting Diffused-Bubble Oxygen Transfer Rate Using the Discrete-Bubble Model. Water Res. 36: 4627-4635.

Downloads

Published

2018-08-21

Issue

Section

Science and Engineering

How to Cite

APPLICATION OF MATLAB-BASED INTERFACE FOR THE CONTROL OF MICROBIOREACTOR OPERATION. (2018). Jurnal Teknologi (Sciences & Engineering), 80(6). https://doi.org/10.11113/jt.v80.10413