EFFECT OF P84 (BTDA-TDI/MDI) COMPOSITION TOWARDS THE PERFORMANCE OF THE DISK SUPPORTED CARBON MEMBRANE

Authors

  • N. H. Ismail Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • W. N. W. Salleh Faculty of Chemical and Energy Engineering (FCEE), Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • N. Sazali Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • M. A. Mohamed Faculty of Chemical and Energy Engineering (FCEE), Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • N. Rosman Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • N. Yusof Faculty of Chemical and Energy Engineering (FCEE), Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

DOI:

https://doi.org/10.11113/jt.v79.10435

Keywords:

Carbon membrane, Disk Supported, Gas separation, Polymer Composition, Performance

Abstract

Carbon membrane has attracted researchers’ attention as it is superior in terms of its gas separation performance. In this study, the composition of polymer precursor in the dope solution was investigated based on carbon membrane performance. P84 polyimide was chosen as the polymer precursor as it fulfils the requirement for carbon membrane properties. By varying the polymer precursor composition (6, 9, 12, and 15 wt.%), P84 was stirred in NMP solvent until homogenous solution was formed. Commercialised alumina disc was coated via spray coating method at 1 bar at room temperature. The disc supported polymeric membrane was carbonised at 700 °C under nitrogen (200 ml/min) with heating rate of 3 °C/min. The carbon membrane was analysed via SEM. Gas permeation tests were performed using pure O2 and N2 at 4 bar at room temperature. The selectivity of 3.7 was obtained using the disc supported carbon membrane for O2/N2. The optimum polymer composition in this study was obtained by 12 wt.% of P84.  

References

Chew, T. L., Ahmad, A. L., and Bhatia, S. 2013. Development of Ba-SAPO-34 Zeolite Membrane for Separation of CO2 in the Binary Gas Mixtures. Jurnal Teknologi. 69-9: 5-10.

Nordin, N. A. H. M., Imsial, A. F., and Mustafa, A. 2013. Synthesis and Preparation of Asymmetric PSf/ZIF-8 Mixed Matrix Membrane for CO2/CH4 Separation. Jurnal Teknologi. 69-9: 73-76.

Tanco, M. A. L., Tanaka, D. A. P., Rodrigues, S.C., Texeira, M., and Mendes, A. 2015. Composite-Alumina-Carbon Molecular Sieve Membranes Prepared From Novolac Resin And Boehmite. Part I: Preparation, Characterization And Gas Permeation Studies. International Journal of Hydrogen Energy. 40: 5653-5663.

Ning, X., and Koros, W. J. 2014. Carbon Molecular Sieve Membranes Derived From Matrimid® Polyimide For Nitrogen/Methane Separation. Carbon. 66: 511-522.

Wey, M. Y., Tseng, H. H., and Chiang, C. K. 2014. Improving The Mechanical Strength And Gas Separation Performance Of CMS Membranes By Simply Sintering Treatment Of α-Al2O3 Support. Journal of Membrane Science. 453: 603-613.

Zhang, C., Geng, Z. and Ma, J. 2013. Self-Assembly Synthesis Of Ordered Mesoporous Carbon Thin Film. Microporous and Mesoporous Materials. 170: 287-292.

Bhuwania, N., Labreche, Y., Achoundong, C. S. K., Baltazar, J., Burgess, S. K., Karwa, S., Xu, L., Henderson, C. L., Williams, P. J., and Koros, W. J. 2014. Engineering Substructure Morphology Of Asymmetric Carbon Molecular Sieve Hollow Fiber Membranes. Carbon. 76: 417-434.

Tseng, H. H., Wang, C. T., Zhuang, G. L., Uchytil, P., Reznickova, J., and Setnickova, K. 2016, March. Enhanced H2/CH4 and H2/CO2 Separation By Carbon Molecular Sieve Membrane Coated On Titania Modified Alumina Support: Effects Of TiO2 Intermediate Layer Preparation Variables On Inter Facial Adhesion. Journal of Membrane Science. 510: 391-404.

Susanna, G., Salamandra, L., Brown, T. M., Carlo, A. D., Brunetti, F., and Reale, A. 2011. Airbrush Spray-Coating Of Polymer Bulk-Heterojunction Solar Cells. Solar Energy Materials & Solar Cells. 95: 1775-1778.

Stähle, P., Gaukel, V., and Schuchmann, H. P. 2015. Influence Of Feed Viscosity On The Two-Phase Flow Inside The Exit Orifice Of An Effervescent Atomizer And On Resulting Spray Characteristics. Food Research International. 77: 55-62.

Wang, H., Ding, S., Zhu, H., Wang, F., Guo, Y., Zhang, H., Chen, J. 2014. Effect Of Stretching Ratio And Heating Temperature On Structure. Separation and Purification Technology. 126: 82-94.

Rodrigues, S. C., Whitley, R., and Mendes, A. 2014. Preparation And Characterization Of Carbon Molecular Sieve Membranes Based On Resorcinol–Formaldehyde Resin. Journal of Membrane Science. 459: 207-216.

Kim, B. S., Park, J. H., Hong, N., Bae, J., Yang, C. S., and Shin, K. 2013. Ultrathin Carbon Film From Carbonization Of Spin-Cast Polyacrylonitrile Film. Journal of Industrial and Engineering Chemistry. 19: 1631-1637.

Zhang, J., Terrones, M., Park, C. R., Mukherjee, R., Monthioux, M., Koratkar, N., Kim, Y. S., Hurt, R., Frackowiak, E., Enoki, T., Chen, Y., Chen, Y., and Bianco, A. 2016. Carbon Science In 2016: Status, Challenges And Perspectives. Carbon. 98: 708-732.

Zhao, C., Xue, J., Ran, F., and Sun, S. 2013. Modification Of Polyethersulfone Membranes – A Review Of Methods. Progress in Materials Science. 58: 76-150.

Salinas, O., Ma, X., Litwiller, E., and Pinnau, I. 2016. High-Performance Carbon Molecular Sieve Membranes For Ethylene/Ethane Separation Derived From An Intrinsically Microporous Polyimide. Journal of Membrane Science. 500: 115-123.

Downloads

Published

2017-01-31

How to Cite

EFFECT OF P84 (BTDA-TDI/MDI) COMPOSITION TOWARDS THE PERFORMANCE OF THE DISK SUPPORTED CARBON MEMBRANE. (2017). Jurnal Teknologi (Sciences & Engineering), 79(1-2). https://doi.org/10.11113/jt.v79.10435