RHIZOPHORA MANGLE L. LEAF BIOCHEMICAL CHARACTERIZATION: NATURAL-GREEN TOTAL-CORROSION INHIBITION PROSPECT ON CONCRETE STEEL-REINFORCEMENT IN 3.5% NaCl

Authors

DOI:

https://doi.org/10.11113/jt.v81.10468

Keywords:

Rhizophora mangle L. leaf, natural-plant material, concrete steel-reinforcement, total-corrosion analyses, biochemical characterization procedures, organic/inorganic bio-constituent analyses, saline/marine simulating-environment

Abstract

Effective corrosion-protection by plant-extract on metals, in aggressive service-environment, is dependent on the biochemical constituents of which the natural plant is made-up. This paper investigates biochemical characterization of inorganic and organic constituents of Rhizophora mangle L. leaf for gaining insight on its steel-reinforcement corrosion mitigating prospect in NaCl-immersed concretes. For the study, atomic absorption spectroscopy (AAS), Fourier transform infrared spectroscopy (FT-IR) and phytochemical screening analyses were employed. Total-corrosion effect was also studied from steel-reinforced concrete samples, having different concentrations of the leaf-extract as admixture, and which were immersed in 3.5% NaCl (simulating saline/marine environment). Results, by AAS, showed that Rhizophora mangle L. leaf inorganic constituents were highest in iron, Fe = 10,316.17 μg/g and lowest in cadmium, Cd = 6.2019 μg/g but has neither lead (Pb) nor chromium (Cr). Also, organic constituents, by FT-IR, indicated extract from the leaf constitutes aromatic chained compounds rich in π-electrons as well as sulphur, nitrogen and oxygen-bearing ligands to which iron (steel-rebar) exhibits coordinate affinity. Phytochemical characterization showed that the leaf-extract contains alkaloids, tannins, phlobatannins, saponins, steroids and glycosides. Corrosion-inhibiting prospect testing, using the leaf-extract, indicated reduced steel-reinforcement total-corrosion effects that correlated with the extract admixture concentrations employed in the 3.5% NaCl-immersed steel-reinforced concretes.

Author Biographies

  • Joshua Olusegun Okeniyi, Mechanical Engineering Department, Covenant University, Ota, Nigeria Department of Mechanical Engineering Science, University of Johannesburg, Johannesburg, South Africa
    Professor, Mechanical Engineering Department, Covenant University, Ota, Nigeria
  • Esther Titilayo Akinlabi, Department of Mechanical Engineering Science, University of Johannesburg, Johannesburg, South Africa
    Professor, Department of Mechanical Engineering Science, University of Johannesburg, Johannesburg, South Africa
  • Jacob Olumuyiwa Ikotun, Department of Civil Engineering and Building, Vaal University of Technology, Vanderbijlpark, South Africa
    Department of Civil Engineering and Building, Vaal University of Technology, Vanderbijlpark, South Africa
  • Stephen Akinwale Akinlabi, Department of Mechanical Engineering Science, University of Johannesburg, Johannesburg, South Africa
    Senior Lecturer, Department of Mechanical Engineering Science, University of Johannesburg, Johannesburg, South Africa
  • Elizabeth Toyin Okeniyi, Petroleum Engineering Department, Covenant University, Ota, Nigeria
    Senior Technologist I, Petroleum Engineering Department, Covenant University, Ota, Nigeria
  • Ojewumi Modupe Elizabeth, Chemical Engineering Department, Covenant University, Ota, Nigeria

    Lecturer I, Chemical Engineering Department, Covenant University, Ota, Nigeria

References

Okeniyi, J. O., Popoola, A. P. I., Loto, C. A., Omotosho, O. A., Okpala, S. O. and Ambrose, I. J. 2015. Effect of NaNO2 and C6H15NO3 Synergistic Admixtures on Steel-Rebar Corrosion in Concrete Immersed in Aggressive Environments. Advances in Materials Science and Engineering. 2015: 540395. doi:10.1155/2015/540395.

Kenshel, O. and O'Connor, A. 2009. Assessing Chloride Induced Deterioration in Condition and Safety of Concrete Structures in Marine Environments. European Journal of Environmental and Civil Engineering. 13(5): 593-613. doi:10.1080/19648189.2009.9693136.

Okeniyi, J. O. 2016. C10H18N2Na2O10 Inhibition and Adsorption Mechanism on Concrete Steel-reinforcement Corrosion in Corrosive Environments. Journal of the Association of Arab Universities for Basic and Applied Sciences. 20: 39-48. doi:10.1016/j.jaubas.2014.08.004.

Khan, M. U., Ahmad, S. and Al-Gahtani, H. J. 2017. Chloride-induced Corrosion of Steel in Concrete: An Overview on Chloride Diffusion and Prediction of Corrosion Initiation Time. International Journal of Corrosion. 2017: 5819202. doi:10.1155/2017/5819202.

Okeniyi, J. O., Loto, C. A. and Popoola, A. P. I. 2016. Effects of Phyllanthus muellerianus Leaf-extract on Steel-Reinforcement Corrosion in 3.5% NaCl-immersed Concrete. Metals. 6(11): 255. doi:10.3390/met6110255.

Aperador, W., Bautista-Ruiz, J. and Chunga, K. 2015. Determination of the Efficiency of Cathodic Protection Applied to Alternative Concrete Subjected to Carbonation and Chloride Attack. International Journal of Electrochemical Science. 10(9): 7073-82.

Patni, N., Agarwal, S. and Shah, P. 2013. Greener Approach towards Corrosion Inhibition. Chinese Journal of Chemical Engineering. 2013: 784186. doi:10.1155/2013/784186.

Raja, P. B., and Sethuraman, M. G. 2008. Natural Products as Corrosion Inhibitor for Metals in Corrosive Media — A Review. Materials Letters. 62(1): 113-6. doi:10.1016/j.matlet.2007.04.079.

Ismail, M., Raja, P. B. and Salawu, A. A. 2015. Developing Deeper Understanding of Green Inhibitors for Corrosion of Reinforcing Steel in Concrete. Handbook of Research on Recent Developments in Materials Science and Corrosion Engineering Education, Lim, H.L. Ed., IGI Global: Pennsylvania, USA. 118-46. doi:10.4018/978-1-4666-8183-5.ch007.

Okeniyi, J. O., Loto, C. A., and A. P. I. Popoola, 2014. Morinda lucida Effects on Steel-reinforced Concrete in 3.5% NaCl: Implications for Corrosion-protection of Wind-energy Structures in Saline/Marine Environments. Energy Procedia 50: 421-28. doi:10.1016/j.egypro.2014.06.051.

Okeniyi, J. O., Ogunlana, O. O., Ogunlana, O. E., Owoeye, T. F. and Okeniyi, E. T. 2015. Biochemical Characterisation of the Leaf of Morinda lucida: Prospects for Environmentally-friendly Steel-rebar Corrosion-protection in Aggressive Medium. TMS2015 Supplemental Proceedings. Cham, Switzerland: Springer International Publishing AG. 635-44. doi:10.1007/978-3-319-48127-2_78.

Rani, B. E. A. and Basu, B. B. J. 2012. Green Inhibitors for Corrosion Protection of Metals and Alloys: An Overview. International Journal of Corrosion. 2012: 380217. doi:10.1155/2012/380217.

Khan, G., Newaz, K. M. S., Basirun, W. J., Ali, H. B. M., Faraj, F. L. and Khan, G. M. 2015. Application of Natural Product Extracts as Green Corrosion Inhibitors for Metals and Alloys in Acid Pickling Processes-A Review. International Journal of Electrochemical Science. 10(8): 6120-34.

Okeniyi, J. O., Omotosho, O. A., Ogunlana, O. O., Okeniyi, E. T., Owoeye, T. F., Ogbiye, A. S. and Ogunlana, E. O. 2015. Investigating Prospects of Phyllanthus muellerianus as Eco-friendly/sustainable Material for Reducing Concrete Steel-reinforcement Corrosion in Industrial/microbial Environment. Energy Procedia. 74: 1274-81. doi:10.1016/j.egypro.2015.07.772.

Okeniyi, J. O., Loto, C. A. and Popoola, A. P. I. 2015. Corrosion Inhibition of Concrete Steel-reinforcement in Saline/Marine Simulating-Environment by Rhizophora mangle L. Solid State Phenomena. 227: 185-89. doi:10.4028/www.scientific.net/SSP.227.185.

Rahim, A. A., Rocca, E., Steinmetz, J. and Kassim, M. J. 2008. Inhibitive Action of Mangrove Tannins and Phosphoric Acid on Pre-rusted Steel via Electrochemical Methods. Corrosion Science. 50: 1546-50. doi:10.1016/j.corsci.2008.02.013.

Rahim, A. A., Rocca, E., Steinmetz, J., Kassim, M. J., Adnan, R. and Ibrahim, M. S. 2007. Mangrove Tannins and Their Flavanoid Monomers as Alternative Steel Corrosion Inhibitors in Acidic Medium. Corrosion Science. 49: 402-17. doi:10.1016/j.corsci.2006.04.013.

Okeniyi, J. O., Omotosho, O. A., Popoola, A. P. I. and Loto, C. A. 2016. Phyllanthus muellerianus and C6H15NO3 Synergistic Effects on 0.5 M H2SO4-immersed Steel-reinforced Concrete: Implication for Clean Corrosion-Protection of Wind Energy Structures in Industrial Environment. Salame C. -T., Aillerie M., Papageorgas P. (eds). AIP Conference Proceedings. AIP Publishing. 1758(10): 030031. doi:10.1063/1.4959427.

Okeniyi, J. O., Loto, C. A. and Popoola, A. P. I. 2015. Inhibition of Steel-Rebar Corrosion in Industrial/Microbial Simulating-environment by Morinda lucida. Solid State Phenomena. 227: 281-85. doi:10.4028/www.scientific.net/SSP.227.281.

Okeniyi, J. O., Loto, C. A., Popoola, A. P. I. and Omotosho, O. A. 2015. Performance of Rhizophora mangle L. leaf-Extract and Sodium Dichromate Synergies on Steel-Reinforcement Corrosion in 0.5 M H2SO4-immersed concrete. CORROSION 2015, NACE International, Houston, Texas, paper 5636.

ASTM G109–99a, 2000. Standard Test Method for Determining the Effects of Chemical Admixtures on the Corrosion of Embedded steel Reinforcement in Concrete Exposed to Chloride Environments. West Conshohocken, PA, USA: ASTM International. doi:10.1520/G0109-99AE01.

Edeoga, H. O., Okwu, D. E. and Mbaebie, B. O. 2005. Phytochemical Constituents of Some Nigerian Medicinal Plants. African Journal of Biotechnology. 4(7): 685-688.

ASTM C192/192M-02, 2002. Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory. West Conshohocken, PA, USA: ASTM International. doi:10.1520/C0192_C0192M-02.

Okeniyi, J. O., Loto, C. A. and Popoola, A. P. I. 2016. Anticorrosion Performance of Anthocleista djalonensis on Steel-reinforced Concrete in a Sulphuric-acid Medium. HKIE Transaction. 23(3): 138-49. doi:10.1080/1023697X.2016.1201437.

Zhou, X., Yang, H. and Wang, F. 2012. Investigation on the Inhibition Behavior of a Pentaerythritol Glycoside for Carbon Steel in 3.5% NaCl Saturated Ca(OH)2 Solution. Corrosion Science. 54: 193-200. doi:10.1016/j.corsci.2011.09.018.

Zafeiropoulou, T., Rakanta, E., Batis, G. 2011. Performance Evaluation of Organic Coatings Against Corrosion in Reinforced Cement Mortars. Progress in Organic Coatings. 72(1): 175-80. doi:10.1016/j.porgcoat.2011.04.005.

United States Environmental Protection Agency (USEPA). 2007. Ecological Soil Screening Levels for Nickel. Washington DC, USA: USEPA.

United States Environmental Protection Agency (USEPA). 2005. Ecological Soil Screening Levels for Cadmium. Washington DC, USA: USEPA.

United States Environmental Protection Agency (USEPA). 2007. Ecological Soil Screening Levels for Copper. Washington DC, USA: USEPA.

United States Environmental Protection Agency (USEPA). 2003. Ecological Soil Screening Levels for Iron. Washington DC, USA: USEPA.

Coates, J. 2000. Interpretation of Infrared Spectra, A Practical Approach. In Encyclopedia of Analytical Chemistry, Meyers, R. A., Ed., Chichester, England: John Wiley & Sons Ltd. 10815-837.

Loto, R. T., Loto, C. A. and Fedotova, T. 2014. Electrochemical Studies of Mild Steel Corrosion Inhibition in Sulfuric Acid Chloride by Aniline. Research on Chemical Intermediates. 40(4): 1501-16. doi:10.1007/s11164-013-1055-x.

Okeniyi, J. O., Omotosho, O. A., Loto, C. A. and Popoola, A. P. I. 2015. Corrosion Rate and Noise Resistance Correlation from NaNO2-admixed Steel-reinforced Concrete. Asian Journal of Scientific Research. 8(4): 454-65. doi:10.3923/ajsr.2015.454.465.

Roberge, P. R. 2003. Statistical Interpretation of Corrosion Test Results. In Cramer, S. D. and Covino Jr., B. S. (eds). ASM Handbook Vol 13A: Corrosion: Fundamentals, Testing, and Protection. Materials Park OH: ASM International. 425-29.

Lange, K. 2010. Numerical Analysis for Statisticians. 2nd ed. New York, USA: Springer Science+Business Media, LLC.

Downloads

Published

2018-11-04

Issue

Section

Science and Engineering

How to Cite

RHIZOPHORA MANGLE L. LEAF BIOCHEMICAL CHARACTERIZATION: NATURAL-GREEN TOTAL-CORROSION INHIBITION PROSPECT ON CONCRETE STEEL-REINFORCEMENT IN 3.5% NaCl. (2018). Jurnal Teknologi, 81(1). https://doi.org/10.11113/jt.v81.10468