REACTION OPTIMIZATION OF Aspergillus niger α-L-ARABINOFURANOSIDASE FOR IMPROVED ARABINOSE PRODUCTION FROM KENAF STEM

Authors

  • Siti Norbaidurah Ayob Department of Bioprocess Engineering, Faculty of Chemical Engineering and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia http://orcid.org/0000-0001-8722-5998
  • Abdul Munir Abdul Murad School of Bioscience and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia
  • Farah Diba Abu Bakar School of Bioscience and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia
  • Rosli Md Illias Department of Bioprocess Engineering, Faculty of Chemical Engineering and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

DOI:

https://doi.org/10.11113/jt.v79.10558

Keywords:

Arabinose, arabinofuranosidase, glycosyl hydrolase, kenaf, arabinoxylan, statictical analysis

Abstract

There are abundant of lignocellulosic biomass readily available with varying compositions. Kenaf (Hibiscus cannabinus) is one of this lignocellulosic biomass that has a high content of hemicellulose. This particular hemicellulose is composed of high arabinoxylan, which is a xylan backbone with arabinofuranosyl branches. In order to hydrolyze arabinoxylan, a branching enzyme is needed. Therefore, α-L-arabinofuranosidase from Aspergillus niger ATCC120120 (AnabfA) was used to hydrolyzed pre-treated kenaf and the reaction conditions were optimized using central composite design (CCD) to produce a significant amount of arabinose. There were 20 experiments conducted with 1.68 star points and 6 replicates at the centre points. The reaction conditions that were optimized are enzyme loading, substrate concentration and reaction time in which resulted with 88 U AnabfA activity, 0.9% (w/v) and 48 h, respectively. These optimized conditions managed to increase the yield of arabinose with 47.17 mg/g arabinose produced. 

Author Biographies

  • Siti Norbaidurah Ayob, Department of Bioprocess Engineering, Faculty of Chemical Engineering and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
    Department of Bioprocess Engineering
  • Abdul Munir Abdul Murad, School of Bioscience and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia
    School of Bioscience and Biotechnology
  • Farah Diba Abu Bakar, School of Bioscience and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia
    School of Bioscience and Biotechnology
  • Rosli Md Illias, Department of Bioprocess Engineering, Faculty of Chemical Engineering and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
    Department of Bioprocess Engineering

References

Akil, H. M., Omar, M. F., Mazuki, A. A. M., Safiee, S., Ishak, Z. A. M., and Abu Bakar, A. 2011. Kenaf Fiber Reinforced Composites: A Review. Materials & Design. 32(8-9): 4107-4121.

Nishino, T., Hirao, K., Kotera, M., Nakamae, K., and Inagaki, H. 2003. Kenaf Reinforced Biodegradable Composite. Composites Science and Technology. 63(9): 1281-1286.

Abdul Khalil, H. P. S., Yusra, A. F. I., Bhat, A. H., and Jawaid, M. 2010. Cell Wall Ultrastructure, Anatomy, Lignin Distribution, and Chemical Composition of Malaysian Cultivated Kenaf Fiber. Industrial Crops and Products. 31(1): 113-121.

Wan Azelee, N. I., Md Jahim, J., Rabu, A., Abdul Murad, A. M., Abu Bakar, F. D., and Md Illias, R. 2014. Efficient Removal of Lignin with the Maintenance of Hemicellulose from Kenaf by Two-Stage Pretreatment Process. Carbohydrate Polymer. 99: 447-453.

Zhang, Y. H. P., Ding, S. Y., Mielenz, J. R., Cui, J.-B., Elander, R. T., Laser, M., Himmel, M. E., McMillan, J. R. and Lynd, L. R. 2007. Fractionating Recalcitrant Lignocellulose at Modest Reaction Conditions. Biotechnology and Bioengineering. 97(2): 214-223.

Seiboth, B., and Metz, B. 2011. Fungal Arabinan and L-arabinose Metabolism. Applied Microbiology Biotechnology. 89(6): 1665-1673.

Saha, B. C., and Bothast, R. J. 1998. Purification and Characterization of a Novel Thermostable α-L-arabinofuranosidase from a Color-Variant Strain of Aureobasidium pullulans. Applied and Environmental Microbiology. 64(1): 216-220.

Hoffmam, Z. B., Oliveira, L. C., Cota, J., Alvarez, T. M., Diogo, J. A., Neto M. O., Citadini, A. P., Leite, V. B., Squina, F. M., Murakami, M. T. and Ruller, R. 2013. Characterization of a Hexameric Exo-acting GH51 Alpha-L-arabinofuranosidase from the Mesophilic Bacillus subtilis. Molecular Biotechnology. 55(3): 260-267.

Numan, M. T., and Bhosle, N. B. 2006. Alpha-L-arabinofuranosidases: The Potential Applications in Biotechnology. Jurnal Industrial Microbiology Biotechnology. 33(4): 247-260.

Akpinar, O., Erdogan, K., Bakir, U., and Yilmaz, L. 2010. Comparison of Acid and Enzymatic Hydrolysis of Tobacco Stalk Xylan for Preparation of Xylooligosaccharides. LWT - Food Science and Technology. 43(1): 119-125.

Mandelli, F., Brenelli, L. B., Almeida, R. F., Goldbeck, R., Wolf, L. D., Hoffmam, Z. B., Ruller, R., Rocha, G. J. M., Mercadante, A. Z. and Squina, F. M. 2014. Simultaneous Production of Xylooligosaccharides and Antioxidant Compounds from Sugarcane Bagasse via Enzymatic Hydrolysis. Industrial Crops and Products. 52: 770-775.

Seri, K., Sanai, K., Matsuo, N., Kawakubo, K., Xue, C., and Inoue, S. 1996. L-arabinose Selectively Inhibits Intestinal Sucrase in an Uncompetitive Manner and Suppresses Glycemic Response After Sucrose Ingestion in Animals. Metabolism. 45(11): 1368-1374.

Sakamoto, T., Inui, M., Yasui, K., Hosokawa, S., and Ihara, H. 2013. Substrate Specificity and Gene Expression of Two Penicillium chrysogenum alpha-L-arabinofuranosidases (AFQ1 and AFS1) Belonging to Glycoside Hydrolase Families 51 and 54. Applied Microbiology Biotechnology. 97(3): 1121-1130.

Alias, N. I., Mahadi, N. M., Murad, A. M. A., Bakar, F. D. A., Rabu, A., and Illias, R. M. 2011. Expression Optimisation of Recombinant α-L-arabinofuranosidase from Aspergillus niger ATCC 120120 in Pichia pastoris and its Biochemical Characterization. African Journal of Biotechnology. 10(35): 6700-6710.

Matsumura, K., Obata, H., Hata, Y., Kawato, A., Abe, Y., and Akita, O. 2004. Isolation and Characterization of a Novel Gene Encoding Alpha-L-arabinofuranosidase from Aspergillus oryzae. Jurnal Bioscience Bioengineering. 98(2): 77-84.

Miller, G. 1959. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugars. Analysis Chemistry. 31: 426-428.

Martín, C., Rocha, G. J. d. M., Santos, J. R. A. d., Wanderley, M. C. d. A., and Gouveia, E. R. 2012. Enzyme Loading Dependence of Cellulose Hydrolysis of Sugarcane Bagasse. Química Nova. 35: 1927-1930.

Ninomiya, K., Kamide, K., Takahashi, K., and Shimizu, N. 2012. Enhanced Enzymatic Saccharification of Kenaf Powder After Ultrasonic Pretreatment in Ionic Liquids at Room Temperature. Bioresource Technology. 103(1): 259-265.

Brienzo, M., Carvalho, W., and Milagres, A. M. 2010. Xylooligosaccharides Production from Alkali-pretreated Sugarcane Bagasse using Xylanases from Thermoascus aurantiacus. Applied Biochemistry Biotechnology. 162(4): 1195-1205.

Mussatto, S., Dragone, G., Fernandes, M., Milagres, A. F., and Roberto, I. 2008. The Effect of Agitation Speed, Enzyme Loading and Substrate Concentration on Enzymatic Hydrolysis of Cellulose from Brewer’s Spent Grain. Cellulose. 15(5): 711-721.

Carrillo, F., Lis, M. J., Colom, X., Lopez-Mesas, M., Valldeperas, J. 2005. Effect of Alkali Pretreatment on Cellulase Hydrolysis of Wheat Straw: Kinetic Study. Process Biochemistry. 40(10): 3360-3364.

Modenbach, A. A., and Nokes, S. E. 2013. Enzymatic Hydrolysis of Biomass at High-Solids Loadings – A Review. Biomass and Bioenergy. 56(0): 526-544.

Wan Azelee, N. I., Jahim, J. M., Fuzi, S. F. Z. M., Rahman, R. A., Md Illias, R. 2016. High Xylooligosaccharides (XOS) Production from Pretreated Kenaf Stem by Enzyme Mixture Hydrolysis. Industrial Crops and Products. 8: 11-19.

Ingesson, H., Zacchi, G., Yang, B., Esteghlalian, A. R., and Saddler, J. N. 2001. The Effect of Shaking Regime on the Rate and Extent of Enzymatic Hydrolysis of Cellulose. Jurnal Biotechnology. 88(2): 177-182.

Kristensen, J., Felby, C., and Jorgensen, H. 2009. Yield-determining Factors in High-solids Enzymatic Hydrolysis of Lignocellulose. Biotechnology for Biofuels. 2(1): 11.

Ehrhardt, M. R., Monz, T. O., Root, T. W., Connelly, R., K., Scott, C. T., Klingenberg, D. J. 2010. Rheology of Dilute Acid Hydrolyzed Corn Stover at High Solids Concentration. Applied Biochemistry Biotechnology. 160: 1102-1115

[33] Yang, C. H., Yang, S. F., and Liu, W. H. 2007. Production of Xylooligosaccharides from Xylans by Extracellular Xylanases from Thermobifida fusca. Jurnal Agricultural Food Chemistry. 55(10): 3955-3959.

Mussatto, S. I., and Roberto, I. C. 2005. Acid Hydrolysis and Fermentation of Brewer's Spent Grain to Produce Xylitol. Journal of the Science of Food and Agriculture. 85(14): 2453-2460.

Newman, R. H., Vaidya, A. A., Sohel, M. I., and Jack, M. W. 2013. Optimizing the Enzyme Loading and Incubation Time in Enzymatic Hydrolysis of Lignocellulosic Substrates. Bioresource Technology. 129: 33-38.

Downloads

Published

2017-04-27

Issue

Section

Science and Engineering

How to Cite

REACTION OPTIMIZATION OF Aspergillus niger α-L-ARABINOFURANOSIDASE FOR IMPROVED ARABINOSE PRODUCTION FROM KENAF STEM. (2017). Jurnal Teknologi, 79(4). https://doi.org/10.11113/jt.v79.10558