EFFECT OF CNTS ON THE ELECTRICAL AND MECHANICAL PROPERTIES OF POLYMERIC COMPOSITE AS PEM FUEL CELL BIPOLAR PLATE

Authors

  • A. Bairan Centre for Advanced Research on Energy, Faculty of Mechanical Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia
  • M. Z. Selamat Centre for Advanced Research on Energy, Faculty of Mechanical Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia
  • S. N. Sahadan Centre for Advanced Research on Energy, Faculty of Mechanical Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia
  • S. A/L Malingam Centre for Advanced Research on Energy, Faculty of Mechanical Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia
  • N. Mohamad Faculty of Manufacturing Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia

DOI:

https://doi.org/10.11113/jt.v80.10774

Keywords:

Nanomaterial fillers, carbon nanotube, conductive polymer composites

Abstract

The use of Carbon Nanotubes (CNTs) as a reinforcement in conductive polymer composite (CPCs) of bipolar plates nowadays attracts a great deal of attention. Therefore, the aim of this study was to identify the most effective and suitable ratio of CNTs loading in multi filler Graphite (G), Carbon Black (CB) composite using a medium crystallinity and low crystallinity Polypropylene (PP) denoted as MC-PP and LC-PP respectively. The composite were developed through compression molding technique with dry mixing method by using a ball mill to investigate the influence of crystallinity on the dispersion of CNTs in PP matrix. Incorporating CNTs as a third filler in G/CB/CNTs/PP nanocomposites produces a synergistic effect that enhances the electrical conductivity, flexural strength, bulk density and hardness of the nanocomposite which exceeded U.S. DOE requirement. The results indicated that CNTs was given more affect in MC-PP than LC-PP due to better electrical conductivity and mechanical properties of G/CB/CNTs/PP composite as bipolar plate.

References

Taherian, R. 2014. A Review of Composite and Metallic Bipolar Plates in Proton Exchange Membrane Fuel Cell: Materials, Fabrication, and Material Selection. J. Power Sources. 265: 370-390.

Dhakate, S. R., Sharma, S., Chauhan, N., Seth, R. K., and Mathur, R. B. 2010. CNTs Nanostructuring Effect on the Properties of Graphite Composite Bipolar Plate. Int. J. Hydrogen Energy. 35(9): 4195-4200.

Selamat, M. Z., Ahmad, M. S., Mohd Daud, M. A., and Ahmad, N. 2013. Effect of Carbon Nanotubes on Properties of Graphite/Carbon Black/Polypropylene Nanocomposites. Adv. Mater. Res. 795: 29-34.

Gautam, R. K., Banerjee, S., and Kar, K. K. 2015. Bipolar Plate Materials for Proton Exchange Membrane Fuel Cell Application. Recent Patents Mater. Sci. 8(1): 15-45.

Hermann, A., Chaudhuri, T., and Spagnol, P. 2005. Bipolar Plates for PEM Fuel Cells: A Review. Int. J. Hydrogen Energy. 30(12): 1297-1302.

Selamat, M. Z., Sahari, J., Muhamad, N., and Muchtar, A. 2011. The Effects of Thickness Reduction and Particle Sizes on the Properties Graphite-Polypropylene Composite. Int. J. Mech. Mater. Eng. 6(2): 194-200.

De Oliveira, M. C. L., Ett G., and Antunes, R. A. 2012. Materials Selection for Bipolar Plates for Polymer Electrolyte Membrane Fuel Cells Using the Ashby Approach. J. Power Sources. 206: 3-13.

Akın, D., Kasgoz A., and Durmus, A. 2014. Quantifying Microstructure, Electrical and Mechanical Properties of Carbon Fiber and Expanded Graphite Filled Cyclic Olefin Copolymer Composites. Compos. Part A Appl. Sci. Manuf. 60: 44-51.

Yeetsorn, R., Fowler, M. W., and Tzoganakis, C. 2011. A Review of Thermoplastic Composites for Bipolar Plate Materials in PEM Fuel Cells. Nanocomposites with Unique Properties and Applications in Medicine and Industry, InTech. Chapter 16.

Hsiao, M. C. et al. 2010. Effect of Graphite Sizes and Carbon Nanotubes Content on Flowability of Bulk-molding Compound and Formability of the Composite Bipolar Plate for Fuel Cell. J. Power Sources. 195(17): 5645-5650.

Maddah, H. A. 2016. Polypropylene as a Promising Plastic: A Review. Am. J. Polym. Sci. 6(1): 1-11.

Liao, S. et al. 2008. Preparation and Properties of Carbon Nanotube/Polypropylene Nanocomposite Bipolar Plates for Polymer Electrolyte Membrane Fuel Cells. J. Power Sources. 185(2): 1225-1232.

Dweiri, R. and Sahari, J. 2007. Electrical Properties of Carbon-based Polypropylene Composites for Bipolar Plates In Polymer Electrolyte Membrane Fuel Cell (PEMFC). J. Power Sources. 171(2): 424-432.

Albaaji, A. J., Castle, E. G., Reece, M. J., Hal, J. P. l., and Evans, S. L. 2017. Effect of Ball-milling Time on Mechanical and Magnetic Properties of Carbon Nanotube Reinforced FeCo Alloy Composites. Mater. Des. 122: 296-306.

Ma, P. C., Siddiqui, N. A., Marom, G., and Kim, J. K. 2010. Dispersion and Functionalization of Carbon Nanotubes for Polymer-based Nanocomposites: A Review. Compos. Part A Appl. Sci. Manuf. 41(10): 1345-1367.

Mohd Salleh, M. A., Abd. Razak, J., Ibrahim, N. A., Fakhrul Razi, A., and Suraya, A. R. 2008. The Influences of Melt-Compounding Parameters of the Tensile Properties of Flow Filler Loading of Untreated-MWCNTs-Polypropylene (PP) Nanocomposites. J. Eng. Sci. Technol. 3(1): 97-108.

Zhang, Q., Rastogi, S., Chen, D., Lippits, D., and Lemstra, P. J. 2006. Low Percolation Threshold in Single-walled Carbon Nanotube/High Density Polyethylene Composites Prepared by Melt Processing Technique. Carbon N. Y. 44(November): 778-785.

Xie, X. L., Mai, Y. W., and Zhou, X. P. 2005. Dispersion and Alignment of Carbon Nanotubes Iin Polymer Matrix: A Review. Mater. Sci. Eng. R Reports. 49(4): 89-112.

Szentes, a. 2012. Electrical Resistivity and Thermal Properties of Compatibilized Multi-walled Carbon Nanotube/Polypropylene Composites. Express Polym. Lett. 6(6): 494-502.

Liao, S. H. et al. 2010. Novel functionalized Carbon Nanotubes as Cross-links Reinforced Vinyl Ester/Nanocomposite Bipolar Plates for Polymer Electrolyte Membrane Fuel Cells. J. Power Sources. 195(23): 7808-7817.

Sengupta, R., Bhattacharya, M., Bandyopadhyay, S., and Bhowmick, A. K. 2011. A Review on the Mechanical and Electrical Properties of Graphite and Modified Graphite Reinforced Polymer Composites. Prog. Polym. Sci. 36(5): 638-670.

Kakati, B. K., Guptha, K. R., and Verma, A. 2009. Fabrication of Composite Bipolar Plate for Proton Exchange Membrane Fuel Cell. J. Environ. Res. Dev. 4(1).

Suherman, H., Sulong, A. B., and Sahari, J. 2013. Effect of the Compression Molding Parameters on the In-Plane and Through-Plane Conductivity of Carbon Nanotubes/Graphite/Epoxy Nanocomposites as Bipolar Plate Material for a Polymer Electrolyte Membrane Fuel Cell. Ceram. Int. 39(2): 1277-1284.

Selamat, M. Z., Ahmad, M. S., Mohd Daud, M. A., Tahir, M. M., and Herawan, S. G. 2014. Preparation of Polymer Composite Bipolar Plate with Different Multi-Filler for Polymer Electrolyte Membrane Fuel Cell (PEMFC). Appl. Mech. Mater. 699: 689-694.

Ahmad, M. S., Selamat, M. Z., Mohd Daud, M. A., Mohamad Yunus, I. K., and Azman, M. S. 2013. Effect of Different Filler Materials in the Development of Bipolar Plate Composite for Polymer Electrolyte Membrane Fuel Cell (PEMFC). Appl. Mech. Mater. 315: 226-230.

Grundler, M., Derieth, T., Beckhaus, P., Heinzel, A., and Cell, F. 2010. CarbonNanoTubes ( CNT ) in Bipolar Plates for PEM Fuel Cell Applications CarbonNanoTubes(CNT) in Bipolar Plates for PEM Fuel Cell Applications. Proceeding WHEC2010. 78: 2010.

Downloads

Published

2018-08-21

Issue

Section

Science and Engineering

How to Cite

EFFECT OF CNTS ON THE ELECTRICAL AND MECHANICAL PROPERTIES OF POLYMERIC COMPOSITE AS PEM FUEL CELL BIPOLAR PLATE. (2018). Jurnal Teknologi, 80(6). https://doi.org/10.11113/jt.v80.10774