• Afida Jemat Department of Mechanical & Materials Engineering, Faculty of Engineering and Built Environment, 43600 UKM Bangi Selangor Darul Ehsan, Malaysia
  • Mariyam Jameelah Ghazali Department of Mechanical & Materials Engineering, Faculty of Engineering and Built Environment, 43600 UKM Bangi Selangor Darul Ehsan, Malaysia
  • Masfueh Razali Department of Periodontology, Faculty of Dentistry, National University of Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
  • Yuichi Otsuka Department of System Safety, Nagaoka University of Technology, 1603-1 Kamitomioka-Cho Nagaoka-shi, Niigata 940-2188, Japan




Coatings, zirconia, roughness, contact angle, dental implant


Various roughness and surface topography of titanium coated ceramic material have been developed and used in clinical trials especially in a medical implant. The present work aimed to investigate the phase and microstructural of the yttria stabilized zirconia (YZP) coating reinforced titania (TiO2) and its effects on wettability for dental implant application. Plasma spray technique was used to prepare the pure YZP and YZP-30 wt.% TiO2 coatings. The titanium alloys coated with YZP/TiO2 were investigated through scanning electron microscopy (SEM) analysis, roughness measurements, and contact angle analysis. The SEM analysis demonstrated a distinguished lamellae structure of YZP and TiO2 in the coating. Instead of low wettability, the YZP-30 wt.% TiO2 ceramic coating demonstrated high porosity and  surface roughness (7.97±0.4 µm) than the pure YZP coating (7.06±0.9 µm) that is beneficial for cell growth and attachment.


Browne, M. and Gregson, P. J. 2000. Effect of Mechanical Surface Pretreatment on Metal Ion Release. Biomaterials. 21: 385-392.

Barros, R. R. M., Novaes Jr., A. B., Papalexiou, V., Souza, S. L. S., Taba Jr., M. Palioto, D. B., et al. 2009. Effect of Biofunctionalized Implant Surface on Osseointegration: a Histomorphometric Study in Dogs. Brazilian Dental Journal. 20: 91-98.

Iwaya, Y., M. Machigashira, K. Kanbara, M. Miyamoto, K. Noguchi, Y. Izumi, et al. 2008. Surface Properties and Biocompatibility of Acid-etched Titanium. Dental Materials Journal. 27: 415-421.

Le Guéhennec, L., Soueidan, A., Layrolle, P., & Amouriq, Y. 2007. Surface Treatments of Titanium Dental Implants for Rapid Osseointegration. Dental Materials. 23: 844-854.

Huang, H.-L., Chang, Y.-Y. , Weng, J.-C., Chen, Y.-C., Lai, C.-H., & Shieh, T.-M. 2013. Anti-bacterial Performance of Zirconia Coatings on Titanium Implants. Thin Solid Films. 528: 151-156.

Sollazzo, V., Pezzetti, F., Scarano, A., Piattelli, A., Bignozzi, C. A., Massari, L., et al. 2008. Zirconium Oxide Coating Improves Implant Osseointegration in Vivo. Dental Materials. 24: 357-361.

Zhao, X., Liu, X., Ding, C., & Chu, P. K. 2006. In Vitro Bioactivity of Plasma-sprayed TiO2 Coating After Sodium Hydroxide Treatment. Surface and Coatings Technology. 200: 5487-5492.

Piconi, C., Maccauro, G., Muratori, F., & Brach Del Prever, E. 2003. Alumina and Zirconia Ceramics in Joint Replacements. J Appl Biomater Biomech. 1: 19-32.

Scarano, A., Di Carlo, F., Quaranta, M., & Piattelli, A. 2003. Bone Response to Zirconia Ceramic Implants: An Experimental Study in Rabbits. Journal of Oral Implantology. 29: 8-12.

Kim, H.-W., Georgiou, G., Knowles, J. C., Koh, Y.-H., & Kim, H.-E. 2004. Calcium Phosphates and Glass Composite Coatings on Zirconia for Enhanced Biocompatibility. Biomaterials. 25: 4203-4213.

Pelaez-Vargas, A., Gallego-Perez, D., Magallanes-Perdomo, M., Fernandes, M. H., Hansford, D. J., De Aza, A. H., et al., 2011. Isotropic Micropatterned Silica Coatings on Zirconia Induce Guided Cell Growth for Dental Implants. Dental Materials. 27: 581-589.

Marchi, J., Ussui, V., Delfino, C. S., Bressiani, A. H. A., & Marques, M. M. 2010. Analysis In Vitro of the Cytotoxicity of Potential Implant Materials. I: Zirconia-Titania Sintered Ceramics. Journal of Biomedical Materials Research Part B: Applied Biomaterials. 94B: 305-311.

Kasuga, T., Kondo, H., & Nogami, M. 2002. Apatite Formation on TiO2 in Simulated Body Fluid. Journal of Crystal Growth. 235: 235-240.

Uchida, M., Kim, H.-M., Kokubo, T., & Nakamura, T. 2001. Apatite-Forming Ability of Sodium-Containing Titania Gels in a Simulated Body Fluid. Journal of the American Ceramic Society. 84: 2969-2974.

Yuan, Y., & Lee, T. R. 2013. Contact Angle and Wetting Properties. Surface Science Techniques. G. Bracco and B. Holst, Eds. ed Berlin, Heidelberg: Springer Berlin Heidelberg. 3-34.

Gittens, R. A., L. Scheideler, L., Rupp, F., Hyzy, S. L., Geis-Gerstorfer, J., Schwartz, Z, et al., 2014. A Review on the Wettability of Dental Implant Surfaces II: Biological and Clinical Aspects. Acta Biomater. 10: 2907-18.

Oates, C. J., Wen, W., & Hamilton, D. W. 2011. Role of Titanium Surface Topography and Surface Wettability on Focal Adhesion Kinase Mediated Signaling in Fibroblasts. Materials. 4: 893.

Ruardy, T. G., Moorlag, H. E., Schakenraad, J. M., Van Der Mei, H. C., & Busscher, H. J. 1997. Growth of Fibroblasts and Endothelial Cells on Wettability Gradient Surfaces. Journal of Colloid and Interface Science. 188: 209-217.

Silva, N. R. F. A., Coelho, P. G., Valverde, G. B., Becker, K., Ihrke, R., Quade, A. et al., 2011. Surface Characterization of Ti and Y-TZP Following Non-thermal Plasma Exposure. Journal of Biomedical Materials Research Part B: Applied Biomaterials. 99B: 199-206.

2004. ASTM Designation; E2109-01 Standard Test Methods for Determining Area Percentage Porosity in Thermal Sprayed Coatings. Annual Book Of ASTM Standard. 03.01ed: West Conshohocken, United States.

Afrasiabi, A., Saremi, M., & Kobayashi, A. 2008. A Comparative Study on Hot Corrosion Resistance of Three Types of Thermal Barrier Coatings: YSZ, YSZ + Al2O3 and YSZ/Al2O3. Materials Science and Engineering: A. 478: 264-269.

Chen, H. , Zhang, Y., & Ding, C. 2002. Tribological Properties of Nanostructured Zirconia Coatings Deposited by Plasma Spraying. Wear. 253: 885-893.

Gajović, A., Šantić, A., Djerdj, I., Tomašić, N., Moguš-Milanković, A., & Su, D. S. 2009. Structure and Electrical Conductivity of Porous Zirconium Titanate Ceramics Produced by Mechanochemical Treatment and Sintering. Journal of Alloys and Compounds. 479: 525-531.

Sadeghi-Fadaki, S. A., Zangeneh-Madar, K., & Valefi, Z. 2010. The Adhesion Strength and Indentation Toughness of Plasma-sprayed Yttria Stabilized Zirconia Coatings. Surface and Coatings Technology. 204: 2136-2141.

Thirumalaikumarasamy, D., Shanmugam, K., & Balasubramanian, V. 2012. Influences of Atmospheric Plasma Spraying Parameters on the Porosity Level of Alumina Coating on AZ31B Magnesium Alloy Using Response Surface Methodology. Progress in Natural Science: Materials InternaTional. 22: 468-479.

Hadjicharalambous, C., Prymak, O., Loza, K., Buyakov, A., Kulkov, S., & Chatzinikolaidou, M., 2015. Effect of Porosity of Alumina and Zirconia Ceramics toward Pre-Osteoblast Response. Frontiers in Bioengineering and Biotechnology. 3: 175.

Marchi, J., Ribeiro, C., Bressiani, A. H. d. A., and Marques, M. M. 2013. Cell Response of Calcium Phosphate Based Ceramics, A Bone Substitute Material. Materials Research. 16: 703-712.

Mekayarajjananonth, T., and Winkler, S. 1999. Contact Angle Measurement on Dental Implant Biomaterials. J Oral Implantol. 25: 230-6.






Science and Engineering

How to Cite