Stabilization of Power System Including Wind Farm by PWM Voltage Source Converter and Chopper Controlled SMES
DOI:
https://doi.org/10.11113/jt.v53.109Abstract
This paper presents a dynamic model of Superconducting Magnetic Energy Storage (SMES) device developed, which can significantly decrease the voltage and power fluctuations of grid connected fixed speed wind generators. The SMES system with a voltage–source IGBT converter and two–quadrant DC–DC chopper is analyzed as a controllable energy source. The objective of the proposed SMES control strategy is to smooth the wind farm output by absorbing or providing real power. Moreover, its reactive power output can also be controlled to keep the wind farm terminal voltage constant. The control methodology of SMES system is suitable for the two objectives stated above. The performance of the proposed system is evaluated by dynamic simulations using a test power system. Real wind speed data is used in the simulation analyses, which validates the effectiveness of the proposed control strategy. Simulation results clearly show that the proposed control strategy can smooth well the wind generator output power and also maintain the terminal voltage at rated level. Key words: Minimization of fluctuations; superconducting magnetic energy storage (SMES); wind generator stabilization; voltage source converter (VSC); DC–DC chopperDownloads
Published
2012-01-20
Issue
Section
Science and Engineering
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.
How to Cite
Stabilization of Power System Including Wind Farm by PWM Voltage Source Converter and Chopper Controlled SMES. (2012). Jurnal Teknologi (Sciences & Engineering), 53(1), 101–119. https://doi.org/10.11113/jt.v53.109