INFLUENCE OF STATIC MIXER ON THE FORMATION OF BIOGRANULES

Authors

  • Suryati Sulaiman Faculty of Civil Engineering and Earth Resources, Universiti Malaysia Pahang, 26300 Kuantan, Pahang, Malaysia
  • Azmi Aris Faculty of Civil Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Abdul Syukor Abd Razak Faculty of Civil Engineering and Earth Resources, Universiti Malaysia Pahang, 26300 Kuantan, Pahang, Malaysia
  • Khalida Muda Faculty of Civil Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Aznah Nor Anuar Malaysian-Japan International Institute of Technology, Universiti Teknologi Malaysia, 54100 Kuala Lumpur, Malaysia

DOI:

https://doi.org/10.11113/jt.v81.10986

Keywords:

Biogranulation, static mixer, SBR, shear force, SAV

Abstract

Present study aimed at evaluating the formation of biogranules using sequencing batch reactors (SBRs) in treating textile wastewater under the influence of static mixer. Three sets of experiment were run with different superficial air velocity (SAV) of 0.5, 1.4 and 2.1 cms-1, each set consisting of two SBR one with and one without static mixer. The developed biogranules in reactors with static mixer (R1M, R2M and R3M) showed good results after approximately 70 days. The biomass in the reactor reached mix liquor suspended solid (MLSS) of 5.75 gL-1 with sludge volume index (SVI) of 107.4 mLg-1 and settling velocity (SV) of 70.3 mh-1 in R1M; MLSS of 7.18 gL-1 with SVI of 29.5 mLg-1 and SV of 80.4 mh-1 for R2M and MLSS of 7.38 gL-1 with SVI of 36.3 mLg-1 and SV of 74.2 mh-1 for R3M. The use of static mixer has contributed to biogranules development with good settling properties.

References

Ma, J., Quan, X. and Li, H. 2013. Application of High OLR-fed Aerobic Granules for the Treatment of Low-strength Wastewater: Performance, Granule Morphology and Microbial Community. Journal of Environmental Sciences. 25(8): 1549-1556.

Wang, X., Zhang, H., Yang, F., Wang, Y. and Gao, M. 2008. Bioresource Technology Long-term Storage and Subsequent Reactivation of Aerobic Granules. 99: 8304-8309.

Liu, X. W., Sheng, G. P. and Yu, H. Q. 2009. Physicochemical Characteristics of Microbial Granules. Biotechnology Advances. 27(6): 1061-70.

Vázquez-Padín, J.R., Mosquera-Corral, A., Campos, J. L., Méndez, R., Carrera, J. and Pérez, J. 2010. Modelling Aerobic Granular SBR at Variable COD/N Ratios Including Accurate Description of Total Solids Concentration. Biochemical Engineering Journal. 49(2): 173-184.

Corsino, S. F., di Biase, A., Devlin, T. R., Munz, G., Torregrossa, M., and Oleszkiewicz, J. A. 2016. Effect of Extended Famine Conditions on Aerobic Granular Sludge Stability in the Treatment of Brewery Wastewater. Bioresource Technology. 226: 150-157.

Ab Halim, M. H., Nor Anuar, A., Abdul Jamal, N. S., Azmi, S. I., Ujang, Z. and Bob, M. M. 2016. Influence of High Temperature on the Performance of Aerobic Granular Sludge in Biological Treatment of Wastewater. Journal of Environmental Management. 184: 271-280.

Manavi, N., Kazemi, A. S. and Bonakdarpour, B. 2017. The Development of Aerobic Granules from Conventional Activated Sludge Under Anaerobic-aerobic Cycles and Their Adaptation for Treatment of Dyeing Wastewater. Chemical Engineering Journal. 312: 375-384.

McSwain, B. S., Irvine, R. L. and Wilderer, P. A. 2004. The influence of Settling Time on the Formation of Aerobic Granules. Water Science and Technology : A Journal of the International Association on Water Pollution Research. 50(10): 195-202

Chen, Y., Jiang, W., Liang, D. T., and Tay, J. H. 2008. Aerobic Granulation Under the Combined Hydraulic and Loading Selection Pressures. Bioresource Technology. 99(16): 7444-7449.

Chen, Y., Jiang, W., Liang, D. T., and Tay, J. H. 2007. Structure and Stability of Aerobic Granules Cultivated Under Different Shear Force in Sequencing Batch Reactors. Applied Microbiology and Biotechnology. 76(5): 1199-208.

Ren, T., Liu, L., Sheng, G., Liu, X., Yu, H., Zhang, M. and Zhu, J. 2008. Calcium Spatial Distribution in Aerobic Granules and Its Effects on Granule Structure, Strength and Bioactivity. 42: 3343-3352.

Henriet, O., Meunier, C., Henry, P. and Mahillon, J. 2016. Improving Phosphorus Removal in Aerobic Granular Sludge Processes Through Selective Microbial Management. Bioresource Technology. 211: 298-306

Devlin, T. R., di Biase, A., Kowalski, M. and Oleszkiewicz, J. A. 2016. Granulation of Activated Sludge Under Low Hydrodynamic Shear and Different Wastewater Characteristics. Bioresource Technology. 224: 1-7.

Tay, J.H., Liu, Q.S. and Liu, Y. 2001. The Effects of Shear Force on the Formation, Structure and Metabolism of Aerobic Granules. Applied Microbiology and Biotechnology. 57(1-2): 227-233.

Dulekgurgen, E., Artan, N., Orhon, D. and Wilderer, P. A. 2008. How Does Shear Affect Aggregation in Granular Sludge Sequencing Batch Reactors? Relations between Shear, Hydrophobicity, and Extracellular Polymeric Substances. Water Science and Technology : A Journal of the International Association on Water Pollution Research. 58(2): 267-76.

Smolders, G. J., Klop, J. M., Van Loosdrecht, M. C. and Heijnen, J. J. 1995. A Metabolic Model of the Biological Phosphorus Removal Process: I. Effect of the Sludge Retention Time. Biotechnology and Bioengineering. 48(3): 222-33.

De Kreuk, M.K., Pronk, M. and Van Loosdrecht, M.C. M. 2005. Formation of Aerobic Granules and Conversion Processes in an Aerobic Granular Sludge Reactor At Moderate and Low Temperatures. Water Research. 39(18): 4476-84.

Zheng, Y. M., Yu, H. Q., Liu, S. J. and Liu, X.-Z. 2006. Formation and Instability of Aerobic Granules Under High Organic Loading Conditions. Chemosphere. 63(10): 1791-800.

Ghangrekar, M. M., Asolekar, S. R. and Joshi, S. G. 2005. Characteristics of Sludge Developed Under Different Loading Conditions during UASB Reactor Start-up and Granulation. Water Research. 39(6): 1123-1133.

Tay, J. H., Ivanov, V., Pan, S., and Tay, S. L. 2002. Specific Layers in Aerobically Grown Microbial Granules. Letters in Applied Microbiology. 34(4): 254-7.

Muda, K., Aris, A., Salim, M. R., Ibrahim, Z., Yahya, A., Van Loosdrecht, M. C. M. and Nawahwi, M. Z. 2010. Development of Granular Sludge for Textile Wastewater Treatment. Water Research. 44(15): 4341-50.

Adav, S. S., Lee, D. J. and Lai, J. Y. 2007. Effects of Aeration Intensity on Formation of Phenol-fed Aerobic Granules and Extracellular Polymeric Substances. Applied Microbiology and Biotechnology. 77(1): 175-82.

Ghangrekar, M. M., Asolekar, S. R., Ranganathan, K. R., Joshi, S. G. 1996. Experience with UASB Reactor Start-up under Different Operating Conditions. Water Sci. Technol. 34(5-6): 421-428.

Liu, Y., Xu, H. L., Yang, S.F. and Tay, J. H. 2003. Mechanisms and Models for Anaerobic Granulation in Upflow Anaerobic Sludge Blanket Reactor. Water Research. 37(3): 661-73

Beun, J. J., Hendriks, A., Van Loosdrecht, M. C. M., Morgenroth, E., Wilderer, P. A. and Heijnen, J. J. 1999. Aerobic Granulation in a Sequencing Batch Reactor. Water Research. 33(10): 2283-2290.

Liu, Q. S., Liu, Y., Tay, J. H. and Show, K. Y. 2005. Responses of Sludge Flocs to Shear Strength. Process Biochemistry. 40(10): 3213-3217.

Downloads

Published

2018-11-04

Issue

Section

Science and Engineering

How to Cite

INFLUENCE OF STATIC MIXER ON THE FORMATION OF BIOGRANULES. (2018). Jurnal Teknologi, 81(1). https://doi.org/10.11113/jt.v81.10986