MEMBRANE-ACTIVE METHANOLIC CRUDE EXTRACT OF THERMOTOLERANT, Aspergillus fumigatus SSH01 AND ITS MODE OF ACTION AGAINST GRAM-POSITIVE PATHOGENS

Authors

  • Mohamad Khairil Radzali Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, UPM Serdang, Selangor Malaysia
  • Akmal Hayat Abdul Karim Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, UPM Serdang, Selangor Malaysia
  • Syahida Ahmad Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, UPM Serdang, Selangor Malaysia
  • Wan Zuhainis Saad Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, UPM Serdang, Selangor Malaysia http://orcid.org/0000-0001-9036-5406

DOI:

https://doi.org/10.11113/jt.v80.11084

Keywords:

Antibacterial activities, disc diffusion method, minimum inhibitory concentration, minimum bactericidal concentration, scanning electron microscope

Abstract

This study was undertaken to investigate the antibacterial properties and the mode of actions of crude extract of Aspergillus fumigatus SSH01. Antibacterial properties was observed against Gram-positive pathogens and showed inhibition against Bacillus subtilis ATCC 6633, Staphylococcus aureus ATCC 6538, methicillin-resistant S. aureus S547 (MRSA) and Listeria monocytogenes L10 with minimum inhibitory concentration (MIC, 0.097- 12.5 mg/ml) and minimum bactericidal concentration (MBC, 0.195 – 25 mg/ml). No surviving cells were detected after 15 h of treatment with the 2MIC of extracts for time-kill assay. Leakage of cellular contents of the treated test pathogens were identified and increased as the concentrations of the extracts increased. The study of morphological surface has shown the bacterial membrane was disrupted and caused loss of viability. This implies the antibacterial effects of A. fumigatus SSH01 extract may serve as the potential antibiotic. 

Author Biography

  • Wan Zuhainis Saad, Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, UPM Serdang, Selangor Malaysia
    Head of Department

References

Chin, Y. W., Balunas, M. J., Chai, H. B. and Kinghorn, A. D. 2006. Drug Discovery from Natural Sources. American Association of Pharmaceutical Scientists. 8(2): E239-E253.

Demain, A. L. 2014. Importance of Microbial Natural Products and the Need to Revitalize Their Discovery. Journal of Industrial Microbiology & Biotechnology. 41(2): 185-201.

Gao, J., Radwan, M. M., Leon, F., Wang, X., Jacob, M. R. Tekwani, L., Khan, S. L., Lupien, S., Hill, R. A., Dugan F. M., Cutle, H. G. and Cutler, S. J. 2012. Antimicrobial and Antiprotozoal Activities of Secondary Metabolites from the Fungus Eurotium repens. Medicinal Chemistry Research. 21(10): 3080-3086.

Doss, A., Parivuguna, V. and Poovendran, P. 2010. Antimicrobial Screening of Secondary Metabolites from Phomopsis theae. Asian Journal of Experimental Biological Sciences. 1: 370-372.

Keller, N. P., Turner, G. and Bennett, J. W. 2005. Fungal Secondary Metabolism from Biochemistry to Genomics. Nature Reviews Microbiology. 3(12): 937-947.

Rode, L. J., Foster, J. W. and Schuhardt, V. T. 1947. Penicillin Production by a Thermophilic Fungus. Journal of Bacteriology. 53(5): 565-566.

Bai, M. P. and Rao, P. L. 1966. Thermophilic Microorganisms. IV. Elaboration of Malbranchins a & b by Malbranchea pulchella. Indian Journal of Biochemistry. 3(3): 187-190.

Chu, Y. S., Niu, X. M., Wang, Y. L., Guo, J. P., Pan, W. Z., Huang, X. W. and Zhang, K. Q. 2010. Isolation of Putative Biosynthetic Intermediates of Prenylated Indole Alkaloids from a Thermophilic Fungus Talaromyces thermophilus. Organic Letters. 12(19): 4356-4359.

Svahn, K. S., Goransson, U., El-Seedi, H., Bohlin, L., Larsson, D. G. J., Olsen, B. and Chryssanthou, E. 2012. Antimicrobial Activity of Filamentous Fungi Isolated from Highly Antibiotic-contaminated River Sediment. Infection Ecology & Epidemiology. 2: 1-6.

Alanis, A. J. 2005. Resistance to Antibiotics: Are We in the Post-antibiotic Era? Archives of Medical Research. 36(6): 697-705.

Svahn, K. S., Goransson, U., El-Seedi, H., Bohlin, L., Larsson, D. G. J., Olsen, B. and Chryssanthou, E. 2012. Antimicrobial Activity of Filamentous Fungi Isolated from Highly Antibiotic-contaminated River Sediment. Infection Ecology & Epidemiology. 2: 1-6.

Draenert, R., Seybold, U., Grützner, E. and Bogner, J. R. 2015. Novel Antibiotics: Are We Still in the Pre–post-Antibiotic Era? Infection. 43(2): 145-151.

Fischbach, M. A. and Walsh, C. T. 2009. Antibiotics for Emerging Pathogens. Science. 325(5944): 1089-1093.

Center for Disease Control and Prevention (CDC). 2013. Antibiotic Resistance Threats in the United States. Available online: http://www.cdc.gov/drugresistance/pdf/ar-threats-2013-508.pdf. (accessed on 5th March 2013).

Guo, J. P., Zhu, C. Y., Zhang, C. P., Chu, Y. S., Wang, Y. L., Zhang, J. X., Wu, D. K., Zhang, K. Q. and Niu, X. M. 2012. Thermolides, Potent Nematocidal PKS-NRPS Hybrid Metabolites from Thermophilic Fungus Talaromyces thermophilus. Journal of the American Chemical Society. 134(50): 20306-20309.

Bladt, T. T., Frisvad, J. C., Knudsen, P. B. and Larsen, T. O. 2013. Anticancer and Antifungal Compounds from Aspergillus, Penicillium and Other Filamentous Fungi. Molecules. 18(9): 11338-11376.

Craveri, R., Manachini, P. L. and Aragozzini, F. 1972. Thermozymocidin New Antifungal Antibiotic from a Thermophilic Eumycete. Experientia. 28(7): 867-868.

Bagli, J., Kluepfel, D. and St.-Jacques, M. 1973. Elucidation of Structure and Stereochemistry of Myriocin. Novel Antifungal Antibiotic. The Journal of Organic Chemistry. 38(7): 1253-1260.

Fujita, T., Inoue, K., Yamamoto, S., Ikumoto, T., Sasaki, S., Toyama, R., Chiba, K., Hoshino, Y. and Okumoto, T. 1994. Fungal Metabolites. Part 11. A Potent Immunosuppressive Activity Found in Isaria sinclairii Metabolite. The Journal of Antibiotics. 47(2): 208-215.

El-Gendy, B. E. D. M. and Rateb, M. E. 2015. Antibacterial Activity of Diketopiperazines Isolated from a Marine Fungus Using T-Butoxycarbonyl Group as a Simple Tool for Purification. Bioorganic & Medicinal Chemistry Letters. 25(16): 3125-3128.

de Barros, B. S., da Silva, J. P., de Souza Ferro, J. N., Agra, I. K. R., de Almeida Brito, F., Albuquerque, E. D., Caetano, L. C. and Barreto, E. 2011. Methanol Extract from Mycelium of Endophytic Fungus Rhizoctonia sp. induces antinociceptive and anti-inflammatory activities in mice. Journal of Natural Medicines. 65(3-4): 526-531.

European Committee on Antimicrobial Susceptibility Testing (EUCAST) (2012). Antimicrobial Susceptibility Testing EUCAST Disk Diffusion Method. Version 5.0 (1-21). Available online: http://www.eucast.org/ast_of_bacteria/disk_diffusion_methodology (accessed on 19th October 2015).

Sarker, S. D., Nahar, L. and Kumarasamy, Y. 2007. Microtitre Plate-based Antibacterial Assay Incorporating Resazurin as an Indicator of Cell Growth, and Its Application in the In Vitro Antibacterial Screening of Phytochemicals. Methods. 42(4): 321-324.

Namuli, A., Abdullah, N., Sieo, C. C., Zuhainis, S. W. and Oskoueian, E. 2011. Phytochemical Compounds and Antibacterial Activity of Jatropha curcas Linn. Extract. Journal of Medicinal Plants Research. 5: 3982-3990.

Aqil, F., Ahmad, I. and Owais, M. 2006. Evaluation of Antiâ€methicillinâ€resistant Staphylococcus aureus (MRSA) Activity and Synergy of Some Bioactive Plant Extracts. Biotechnology Journal. 1(10): 1093-1102.

Sampathkumar, B., Khachatourians, G. G. and Korber, D. R. 2003. High pH during Trisodium Phosphate Treatment Causes Membrane Damage and Destruction of Salmonella enterica serovar Enteritidis. Applied and Environmental Microbiology. 69(1): 122-129.

Carson, C. F., Mee, B. J. and Riley, T. V. 2002. Mechanism of Action of Melaleuca alternifolia (tea tree) Oil on Staphylococcus aureus Determined by Time-kill, Lysis, Leakage, and Salt Tolerance Assays and Electron Microscopy. Antimicrobial Agents and Chemotherapy. 46(6): 1914-1920.

Bradford, M. M. 1976. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-dye Binding. Analytical Biochemistry. 72(1): 248-254.

García-Pérez, M. E., Royer, M., Duque-Fernandez, A., Diouf, P. N., Stevanovic, T. and Pouliot, R. 2010. Antioxidant, Toxicological and Antiproliferative Properties of Canadian Polyphenolic Extracts on Normal and Psoriatic Keratinocytes. Journal of Ethnopharmacology. 132(1): 251-258.

Obeidat, M. 2011. Antimicrobial Activity of Some Medicinal Plants Against Multidrug Resistant Skin Pathogens. Journal of Medicinal Plants Research. 5(16): 3856-3860.

Vaquero, M. J. R., Alberto, M. R. and Nadra, M. C. M. 2007. Antibacterial Effect of Phenolic Compounds from Different Wines. Food Control. 18: 93-101.

Ray, A., Bharali, P. and Konwar, B. K. 2013. Mode of Antibacterial Activity of Eclalbasaponin Isolated from Eclipta alba. Applied Biochemistry and Biotechnology. 171(8): 2003-2019.

Menger, F. M. and Keiper, J. S. 1998. Digitonin as a Chemical Trigger for the Selective Transformation of Giant Vesicles. Angewandte Chemie International Edition. 37: 3433-3435.

Barchan, A., Bakkali, M., Arakrak, A., Pagán, R. and Laglaoui A. 2014. The Effects of Solvents Polarity on the Phenolic Contents and Antioxidant Activity of Three Mentha Species Extracts. International Journal of Current Microbiology and Applied Sciences. 3(11): 399-412.

Oskoueian, E., Abdullah, N., Ahmad, S., Saad, W. Z., Omar, A. R. and Ho, Y. W. 2011. Bioactive Compounds and Biological Activities of Jatropha curcas L. Kernel Meal Extract. International Journal of Molecular Sciences. 12(9): 5955-5970.

Arivudainambi, U. S., Anand, T. D., Shanmugaiah, V., Karunakaran, C. and Rajendran, A. 2011. Novel Bioactive Metabolites Producing Endophytic Fungus Colletotrichum gloeosporioides against Multidrugâ€resistant Staphylococcus aureus. FEMS Immunology & Medical Microbiology. 61(3): 340-345.

Kumar, S., Kaushik, N. and Proksch, P. 2013. Identification of Antifungal Principle in the Solvent Extract of an Endophytic Fungus Chaetomium globosum from Withania somnifera. SpringerPlus. 2(1): 37-47.

Kumar, A., Robert Antony, A. and Kannan, V. R. 2015. Exploration of Endophytic Microorganisms from Selected Medicinal Plants and Their Control Potential to Multi-drug Resistant Pathogens. Journal of Medicinal Plants Research. 3(2): 49-57.

Cowan, M. M. 1999. Plant Products as Antimicrobial Agents. Clinical Microbiology Reviews. 12(4): 564-582.

Salman, M. T., Khan, R. A. and Shukla, I. 2008. Antimicrobial Activity of Nigella Sativa Linn. Seed Oil Against Multi-drug Resistant Bacteria from Clinical Isolates. Natural Product Radiance. 7(1): 10-14.

Tenover, F. C. 2006. Mechanisms of Antimicrobial Resistance in Bacteria. American Journal of Medicine. 119(6): S3-S10.

Cuencaâ€Estrella, M. 2014. Antifungal Drug Resistance Mechanisms in Pathogenic Fungi: From Bench to Bedside. Clinical Microbiology and Infection. 20(S6): 54-59.

Hyldgaard M., Mygind, T. and Meyer, R. L. 2012. Essential Oils in Food Preservation: Mode of Action, Synergies, and Interactions with Food Matrix Components. Frontiers in Microbiology. 12(3): 1-24.

Darah, I., Lim, S. H. and Nithianantham, K. 2013. Effects of Methanol Extract of Wedelia chinensis osbeck (asteraceae) Leaves Against Pathogenic Bacteria with Emphasise on Bacillus cereus. Indian Journal of Pharmaceutical Sciences. 75(5): 533-539.

Nath, A. and Joshi, S. R. 2015. Ultrastructural Effect on Mastitis Pathogens by Extract of Endophytic Fungi Associated with Ethnoveterinary Plant, Hibiscus sabdariffa L. Journal of Microscopy and Ultrastructure. 3(1): 38-43.

Subban, K., Subramani, R. and Johnpaul, M., 2013. A Novel Antibacterial and Antifungal Phenolic Compound from the Endophytic Fungus Pestalotiopsis mangiferae. Natural Product Research. 27(16): 1445-1449.

Godowski, K. C. 1988. Antimicrobial Action of Sanguinarine. The Journal of Clinical Dentistry. 1(4): 96-101.

Oonmetta-Aree, J., Suzuki, T., Gasaluck, P. and Eumkeb, G. 2006. Antimicrobial Properties and Action of Galangal (Alpinia galanga Linn.) on Staphylococcus aureus. LWT- Food Science and Technology. 39(10): 1214-1220.

Limsuwan, S., Kayser, O. and Voravuthikunchai, S. P. 2012. Antibacterial activity of Rhodomyrtus tomentosa (Aiton) Hassk. Leaf Extract against Clinical Isolates of Streptococcus pyogenes. Evidence-Based Complementary and Alternative Medicine. 2012: 1-6.

Cleaves, H. J. and Miller, S. L. 1998. Oceanic Protection of Prebiotic Organic Compounds from UV Radiation. Proceedings of the National Academy of Sciences of the United States. 95(13): 7260-7263.

Iandolo, J. J. and Ordal, Z. J. 1966. Repair of Thermal Injury of Staphylococcus aureus. Journal of Bacteriology. 91(1): 134-142.

Şenyuva, H. Z., Gilbert, J. and Öztürkoğlu, S. 2008. Rapid Analysis of Fungal Cultures and Dried Figs for Secondary Metabolites by LC/TOF-MS. Analytica Chimica Acta. 617(1): 97-106.

Banerjee, D. and Rathode, B. 2013. To Optimise the Cultural Conditions on the Production of Kojic Acid by Aspergillus Species. LS: International Journal of Life Sciences. 2(3): 168-175.

Mohamad, R., Mohamed, M. S., Suhaili, N., Salleh, M. M. and Ariff, A. B. 2010. Kojic Acid: Applications and Development of Fermentation Process for Production. Biotechnology and Molecular Biology Reviews. 5(2): 24-37.

Numata, T., Kobayashi, Y., Ito, T., Harada, K., Tsuboi, R. and Okubo, Y. 2015. Two Cases of Allergic Contact Dermatitis due to Skin-whitening Cosmetics. Allergology International. 64(2): 194-195.

Gold, N. D., Gowen, C. M., Lussier, F. X., Cautha, S. C., Mahadevan, R. and Martin, V. J. 2015. Metabolic Engineering of a Tyrosine-oerproducing Yeast Platform Using Targeted Metabolomics. Microbial Cell Factories. 14(1): 73-89.

Para, G. M. and Baratti, J. C. 1984. Effect Of Culture Conditions on the Production of Tyrosine Phenol-lyase by Erwinia herbicola. Applied and Environmental Microbiology. 48(6): 1256-1258.

Krishnaveni, R., Rathod, V., Thakur, M. S. and Neelgund, Y. F. 2009. Transformation of L-tyrosine to L-DOPA by a Novel Fungus, Acremonium rutilum, Under Submerged Fermentation. Current Microbiology. 58(2): 122-128.

Follmann, W., Behm, C. and Degen, G. H. 2014. Toxicity of the Mycotoxin Citrinin and Its Metabolite Dihydrocitrinone and of Mixtures of Citrinin and Ochratoxin a in vitro. Archives of Toxicology. 88(5): 1097-1107.

Petkova-Bocharova, T., Castegnaro, M., Michelon, J. and Maru, V. 1990. Ochratoxin A and Other Mycotoxins in Cereals from an Area of Balkan Endemic Nephropathy and Urinary Tract Tumours in Bulgaria. IARC Scientific Publications. 115: 83-87.

Flajs, D. and Peraica, M. 2009. Toxicological Properties of Citrinin. Archives of Industrial Hygiene and Toxicology. 60(4): 457-464.

IARC (International Agency for Research on Cancer). 1993. Some Naturally Occurring Substances: Heterocyclic Aromatic Amines and Mycotoxins. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. 56: 397-444.

Chain, E., Florey, H. W., Jennings, M. A. and Williams, T. I. 1943. Helvolic Acid, an Antibiotic Produced by Aspergillus fumigatus, mut. Helvola Yuill. British Journal of Experimental Pathology. 24(3): 108-119.

Rementeria, A., López-Molina, N., Ludwig, A., Vivanco, A. B., Bikandi, J., Pontón, J. and Garaizar, J. 2005. Genes and Molecules involved in Aspergillus fumigatus Virulence. Revista Iberoamericana de Micología. 22(1): 1-23.

Bunger, J., Westphal, G., Mönnich, A., Hinnendahl, B., Hallier, E. and Müller, M. 2004. Cytotoxicity of Occupationally and Environmentally Relevant Mycotoxins. Toxicological Sciences. 202(3): 199-211.

Downloads

Published

2017-12-13

Issue

Section

Science and Engineering

How to Cite

MEMBRANE-ACTIVE METHANOLIC CRUDE EXTRACT OF THERMOTOLERANT, Aspergillus fumigatus SSH01 AND ITS MODE OF ACTION AGAINST GRAM-POSITIVE PATHOGENS. (2017). Jurnal Teknologi, 80(1). https://doi.org/10.11113/jt.v80.11084