EFFECTS OF HEAT SHOCK PROTEIN CLPC’S ɑ4-β2 LOOP DELETION FROM AN ALKALIPHILIC BACILLUS LEHENSIS G1 ON ITS STABILITY AND ACTIVITY

Authors

  • Siti Aishah Rashid Department of Bioprocess and Polymer Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Farah Diba Abu Bakar School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia
  • Abdul Munir Abdul Murad School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia
  • Rosli Md. Illias Department of Bioprocess and Polymer Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

DOI:

https://doi.org/10.11113/jt.v79.11100

Keywords:

Alkaliphilic ClpC, N-terminal loop, deletion, secondary structure, ATPase activity

Abstract

Protein loops are frequently considered as critical determinants that influence not only the function but also the structure of a protein. Bacillus lehensis G1 ClpC (WT) has a four-residue insertion at the ɑ4-β2 loop, which is absent in Bacillus subtillis ClpC. To foster a deep understanding of the significance of additional residues in the structure and function of ClpC, a deletion mutation involving residues 76-79 (∆76-79) was constructed. Circular dichroism spectroscopy was used to evaluate the structural perturbations associated with the deletion. The results demonstrated that, the precise configuration of the ɑ4-β2 loop is important for maintaining the structure and function of WT. ∆76-79 leads to severe global destabilisation and unfolding of the secondary structure of the protein, which decreases ATPase activity. The optimum temperature for ∆76-79 is 25 °C, down from 45 °C for WT. The results suggest that the additional four residues at the ɑ4-β2 loop are critical for WT’s structure and function.

Author Biographies

  • Farah Diba Abu Bakar, School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia
    Bioscience and Biotechnology
  • Abdul Munir Abdul Murad, School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia
    Bioscience and Biotechnology
  • Rosli Md. Illias, Department of Bioprocess and Polymer Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
    Bioprocess and Polymer engineering

References

Feder, M. E., & Hofmann, G. E. 1999. Heat-shock Proteins, Molecular Chaperones, And The Stress Response: Evolutionary And Ecological Physiology. Annual Review Of Physiology. 61: 243-82. doi:10.1146/annurev.physiol.61.1.243.

Nguyen, A. D., Gotelli, N. J., & Cahan, S. H. 2016. The Evolution Of Heat Shock Protein Sequences, Cis-Regulatory Elements, And Expression Profiles In The Eusocial Hymenoptera. BMC Evolutionary Biology. 16: 15. doi:10.1186/s12862-015-0573-0.

Kojetin, D. J., McLaughlin, P. D., Thompson, R. J., Dubnau, D., Prepiak, P., Rance, M., & Cavanagh, J. 2009. Structural and Motional Contributions of the Bacillus subtilis ClpC N-Domain to Adaptor Protein Interactions. Journal of Molecular Biology. 387: 639-652. doi:10.1016/j.jmb.2009.01.046.

Papaleo, E., Saladino, G., Lambrughi, M., Lindorff-Larsen, K., Gervasio, F. L., & Nussinov, R. 2016. The Role of Protein Loops and Linkers in Conformational Dynamics and Allostery. Chemical Reviews. doi:10.1021/acs.chemrev.5b00623.

Jager, M., Deechongkit, S., Koepf, E. K., Nguyen, H., Gao, J., Powers, E. T., Kelly, J. W. 2008. PeptideScience. 90(6): 751. doi:10.1002/bip.21101.

Marcelino, A. M. C., & Gierasch, L. M. 2008. Roles of Beta-turns In Protein Folding: From Peptide Models To Protein Engineering. Biopolymers. 89: 380-91. doi:10.1002/bip.20960.

Chang, H., Jian, J., Hsu, H., Lee, Y., Chen, H., You, J., Lee, K. H. 2014. Article Loop-Sequence Features and Stability Determinants in Antibody Variable Domains by High-Throughput Experiments. Structure/Folding and Design. 22(1): 9-21. doi:10.1016/j.str.2013.10.005.

Kojetin, D. J., McLaughlin, P. D., Thompson, R. J., Dubnau, D., Prepiak, P., Rance, M., & Cavanagh, J. 2009. Structural and Motional Contributions of the Bacillus subtilis ClpC N-Domain to Adaptor Protein Interactions. Journal of Molecular Biology. 387: 639-652. doi:10.1016/j.jmb.2009.01.046.

Arnold, U., Köditz, J., Markert, Y., & Ulbrich-Hofmann, R. 2009. Local Fluctuations Vs. Global Unfolding Of Proteins Investigated By Limited Proteolysis. Biocatalysis and Biotransformation. 23: 159-167. doi:10.1080/10242420500183287.

Fetrow, J. S. 1995. Omega Loops: Nonregular Secondary Structures Significant In Protein Function And Stability. FASEB Journal : Official Publication Of The Federation Of American Societies For Experimental Biology. 9: 708-17.

Krishna, M. M. G., Lin, Y., Rumbley, J. N., & Englander, S. W. 2003. Cooperative Omega Loops In Cytochrome C: Role In Folding And Function. Journal of Molecular Biology. 331: 29-36. doi:10.1016/S0022-2836(03)00697-1.

Takami, H., Nakasone, K., Takaki, Y., Maeno, G., Sasaki, R., Masui, N., Horikoshi, K. 2000. Complete Genome Sequence Of The Alkaliphilic Bacterium Bacillus Halodurans And Genomic Sequence Comparison With Bacillus Subtilis. Nucleic Acids Research. 28: 4317-31. doi:10.1093/nar/28.21.4317.

Veith, B., Herzberg, C., Steckel, S., Feesche, J., Maurer, K. H., Ehrenreich, P., Gottschalk, G. 2004. The Complete Genome Sequence Of Bacillus Licheniformis DSM13, An Organism With Great Industrial Potential. Journal of Molecular Microbiology and Biotechnology. 7: 204-211. doi:10.1159/000079829.

Eppinger, M., Bunk, B., Johns, M. A., Edirisinghe, J. N., Kutumbaka, K. K., Koenig, S. S. K., Vary, P. S. 2011. Genome sequences Of The Biotechnologically Important Bacillus Megaterium Strains QM B1551 and DSM319. Journal of Bacteriology. 193: 4199-4213. doi:10.1128/JB.00449-11.

Kulkarni, G. V, & Deobagkar, D. D. 2002. A Cytosolic Form Of Aminopeptidase P From Drosophila Melanogaster: Molecular Cloning And Characterization. Journal of Biochemistry. 131: 445-452.

Verma, M. L., Naebe, M., Barrow, C. J., & Puri, M. 2013. Enzyme Immobilisation on Amino-Functionalised Multi-Walled Carbon Nanotubes: Structural and Biocatalytic Characterisation. PLoS ONE. 8. doi:10.1371/journal.pone.0073642.

Sahin, E., Grillo, A. O., Perkins, M. D., & Roberts, C. J. 2010. Comparative Effects Of pH And Ionic Strength On Protein-Protein Interactions, Unfolding, And Aggregation For IgG1 Antibodies. Journal of Pharmaceutical Sciences. 99: 4830-4848. doi:10.1002/jps.22198.

Wang, F., Mei, Z., Qi, Y., Yan, C., Hu, Q., Wang, J., & Shi, Y. 2011. Structure And Mechanism Of The Hexameric MecA-ClpC Molecular Machine. Nature. 471: 331-335. doi:10.1038/nature09780.

Gavrilov, Y., Dagan, S., & Levy, Y. 2015. Shortening A Loop Can Increase Protein Native State Entropy. Proteins: Structure, Function and Bioinformatics. 83: 2137-2146. doi:10.1002/prot.24926.

Collinet, B., Garcia, P., Minard, P., & Desmadril, M. 2001. Role Of Loops In The Folding And Stability Of Yeast Phosphoglycerate Kinase. European Journal of Biochemistry. 268: 5107-5118. doi:10.1046/j.0014-2956.2001.02439.x.

Graziano, G., & Merlino, A. 2014. Molecular Bases Of Protein Halotolerance. Biochimica et Biophysica Acta - Proteins and Proteomics. doi:10.1016/j.bbapap.2014.02.018.

Dyson, H. J., Wright, P. E., & Scheraga, H. A. 2006. The Role Of Hydrophobic Interactions In Initiation And Propagation Of Protein Folding. Proceedings of the National Academy of Sciences. 103: 13057-13061. doi:10.1073/pnas.0605504103.

Zhou, R., Silverman, B. D., Royyuru, A. K., & Athma, P. 2003. Spatial Profiling Of Protein Hydrophobicity: Native Vs. Decoy Structures. Proteins: Structure, Function and Genetics. 52: 561-572. doi:10.1002/prot.10419.

Southall, N. T., Dill, K. A., & Haymet, A. D. J. 2002. A View Of The Hydrophobic Effect. Journal of Physical Chemistry B. doi:10.1021/jp015514e.

Zhu, B. Y., Zhou, N. E., Kay, C. M., & Hodges, R. S. 1993. Packing And Hydrophobicity Effects On Protein Folding And Stability: Effects Of Beta-Branched Amino Acids, Valine And Isoleucine, On The Formation And Stability Of Two-Stranded Alpha-Helical Coiled Coils/Leucine Zippers. Protein Science : A Publication Of The Protein Society. 2: 383-94. doi:10.1002/pro.5560020310.

Malgieri, G., & Eliezer, D. 2008. Structural Effects Of Parkinson’s Disease Linked DJ-1 Mutations. Protein Science : A Publication Of The Protein Society. 17: 855-68. doi:10.1110/ps.073411608.

Kumar, S., Tsai, C.-J., & Nussinov, R. 2000. Factors Enhancing Protein Thermostability. Protein Engineering. 13: 179-191. doi:10.1093/protein/13.3.179.

Raghunathan, G., Soundrarajan, N., Sokalingam, S., Yun, H., & Lee, S. G. 2012. Deletional Protein Engineering Based on Stable Fold. PLoS ONE. 7. doi:10.1371/journal.pone.0051510.

Downloads

Published

2017-06-21

Issue

Section

Science and Engineering

How to Cite

EFFECTS OF HEAT SHOCK PROTEIN CLPC’S ɑ4-β2 LOOP DELETION FROM AN ALKALIPHILIC BACILLUS LEHENSIS G1 ON ITS STABILITY AND ACTIVITY. (2017). Jurnal Teknologi, 79(5). https://doi.org/10.11113/jt.v79.11100