• Klinsmann Cheong Lee Khang Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Mohd Hayrie Mohd Hatta Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Siew Ling Lee Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Leny Yuliati Ma Chung Research Center for Photosynthetic Pigments, Universities Ma Chung, Malang 65151, Indonesia



TiO2, ZnO, ZnO/TiO2 composites, phenol, photocatalytic activity


A series of mesoporous ZnO/TiO2 composites were successfully synthesized using cetyltrimethylammonium bromide surfactant. The composites of different Zn:Ti molar ratios (0.5:1, 0.75:1, and 1:1) were prepared by impregnating ZnO onto mesoporous TiO2. XRD results verified co-existence of both anatase TiO2 and hexagonal wurtzite ZnO in the ZnO/TiO2 composites. Based on the Tauc plots, all the composites showed almost the same band gap energy of approximately 3.21 eV. The fourier transform infrared spectroscopy results successful covering of ZnO on the surface of the TiO2 as the hydrophilicity property of TiO2 decreased remarkably with the loading of ZnO in the composites. N2 adsorption-desorption isotherms of the samples exhibited type-IV isotherm with a hysteresis loop. The Barrett-Joyner-Halenda pore size distribution revealed that the average pore size of the composites was around 3.6 nm, indicating the formation of mesopores dominantly in the samples. The photocatalytic removal of phenol over the samples under UV light irradiation after 3 h decreased in the order: ZnO/TiO2 composites > anatase TiO2 (with surfactant) > anatase TiO2 (without surfactant) > ZnO. The composite with Zn:Ti molar ratio of 0.75:1 has achieved the highest photocatalytic activity of 36.5% in the removal of phenol under UV light irradiation for 3 h.

Author Biography

  • Klinsmann Cheong Lee Khang, Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
    Chemistry Department, Faculty of Science


Li, X., Lv, K., Deng, K., Tang, J., Su, R., Sun, J., & Chen, L. (2009). Synthesis and Characterization of ZnO and TiO2 Hollow Spheres with Enhanced Photoreactivity. Materials Science and Engineering: B. 158(1). 40-47.

Koh, P. W., Yuliati, L., Lintang, H. O., Lee, S. L. 2015. Increasing Rutile Phase Amount in Chromium-doped Titania by Simple Stirring Approach for Photodegradation of Methylene Blue under Visible Light. Australian Journal of Chemistry. 68. 1129-1135.

Ooi, Y. K., Yuliati, L., Lee, S. L. 2016. Phenol Photocatalytic Degradation over Mesoporous TUD-1-supported Chromium Oxide-doped Titania Photocatalyst. Chinese Journal of Chemistry. 37: 1871-1881.

Fujishima, A. 1972. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature. 238: 37-38.

Yu, T., Tan, X., Zhao, L., Yin, Y., Chen, P., & Wei, J. 2010. Characterization, Activity and Kinetics of a Visible Light Driven Photocatalyst: Cerium and Nitrogen Co-doped TiO2 Nanoparticles. Chemical Engineering Journal. 157(1): 86-92.

Lin, S., Shi, L., Yoshida, H., Li, M., & Zou, X. 2013. Synthesis of Hollow Spherical Tantalum Oxide Nanoparticles and Their Photocatalytic Activity for Hydrogen Production. Journal of Solid State Chemistry. 199: 15-20.

Kanjwal, M. A., Barakat, N. A., Sheikh, F. A., Park, S. J., & Kim, H. Y. 2010. Photocatalytic Activity of ZnO-TiO2 Hierarchical Nanostructure Prepared by Combined Electrospinning and Hydrothermal Techniques. Macromolecular Research. 18(3): 233-240.

Zhang, M., An, T., Hu, X., Wang, C., Sheng, G., & Fu, J. 2004. Preparation and Photocatalytic Properties of a Nanometer ZnO–SnO2 Coupled Oxide. Applied Catalysis A: General. 260(2): 215-222.

Logothetidis, S., Laskarakis, A., Kassavetis, S., Lousinian, S., Gravalidis, C., & Kiriakidis, G. 2008. Optical and Structural Properties of Zno for Transparent Electronics. Thin Solid Films. 516(7): 1345-1349.

Zhang, M., An, T., Liu, X., Hu, X., Sheng, G., & Fu, J. 2010. Preparation of a High-activity ZnO/TiO2 Photocatalyst via Homogeneous Hydrolysis Method with Low Temperature Crystallization. Materials Letters. 64(17): 1883-1886.

Valencia, S., Marín, J. M., & Restrepo, G. 2010. Study of the Bandgap of Synthesized Titanium Dioxide Nanoparticles Using the Sol-gel Method and a Hydrothermal Treatment. Open Materials Science Journal. 4(1): 9-14.

Dutta, S., & Ganguly, B. N. 2012. Characterization of ZnO Nanoparticles Grown in Presence of Folic Acid Template. Journal of Nanobiotechnology. 10(1): 29.

Prabhu, Y. T., Rao, K. V., Kumar, V. S. S., & Kumari, B. S. 2013. Synthesis of ZnO Nanoparticles by a Novel Surfactant Assisted Amine Combustion Method. Advances in Nanoparticles. 2(01): 45.

Samantaray, S. K., Mohapatra, P., & Parida, K. 2003. Physico-chemical Characterisation and Photocatalytic Activity of Nanosized SO42-/TiO2 Towards Degradation of 4-nitrophenol. Journal of Molecular Catalysis A: Chemica. 198(1): 277-287.

Alim, N. S., Lintang, H. O., & Yuliati, L. 2016. Photocatalytic Removal of Phenol Over Titanium Dioxide-reduced Graphene Oxide Photocatalyst. IOP Conference Series: Materials Science and Engineering. 107(1): 012001. IOP Publishing.

Serpone, N., Maruthamuthu, P., Pichat, P., Pelizzetti, E., & Hidaka, H. 1995. Exploiting the Interparticle Electron Transfer Process in the Photocatalysed Oxidation of Phenol, 2-Chlorophenol and Pentachlorophenol: Chemical Evidence for Electron and Hole Transfer Between Coupled Semiconductors. Journal of Photochemistry and Photobiology A: Chemistry. 85(3): 247-255.






Science and Engineering

How to Cite