• Nur Ayshah Rosli Institute of Bioproduct Development, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
  • Rosnani Hasham Institute of Bioproduct Development, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
  • Azila Abdul Aziz Institute of Bioproduct Development, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia



D-optimal mixture design, Zingiber zerumbet oil, optimization, nanostructured lipid carrier, drug delivery



The D-optimal mixture design was employed to evaluate the effect of different composition variables on particle size, polydispersity index, zeta potential and encapsulation efficiency for optimization of Zingiber zerumbet oil loaded nanostructured lipid carrier (NLC). The glyceryl monostearate were used as solid lipid, virgin coconut oil as liquid lipid, and Tween 80 as well as soy lecithin were used as surfactant to achieve stable NLC formulation. The hot homogenization and ultrasonication techniques were employed in preparation of NLC. The statistical evaluations by ANOVA revealed that optimum NLC formulation generated as 3.7% Zingiber zerumbet oil, 5% liquid lipid and 1.3% solid lipid. The optimal NLC formulation had an average diameter of 91.002 nm, PDI of 0.172, zeta-potential of -40.88 mV, and encapsulation efficiency of 94.45%. The transmission electron microscopy (TEM) observations exhibited spherical morphology of Zingiber zerumbet oil loaded NLC. Penetration through Strat-M® membrane shown an excellent diffusion coefficient of NLC-Zingiber zerumbet oil. Therefore, D-optimal mixture design has succeeded in generating optimum NLC formulation for encapsulation of Zingiber zerumbet oil. The stable formulation of NLC for encapsulating essential oil give promising future in various applications such as drug delivery, food, textile and cosmetics. 


Author Biographies

  • Nur Ayshah Rosli, Institute of Bioproduct Development, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia

    PhD Candidate

    Institute of Bioproduct Development (IBD)
    Universiti Teknologi  Malaysia

    UTM 81310 Johor Bahru
    Johor, Malaysia

  • Rosnani Hasham, Institute of Bioproduct Development, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
    Senior LecturerInstitute of Bioproduct Development (IBD)
    Universiti Teknologi  Malaysia
    UTM 81310 Johor Bahru
    Johor, Malaysia
  • Azila Abdul Aziz, Institute of Bioproduct Development, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
    Branch Manager
    Institute of Bioproduct Development
    (formerly known as CEPP)
    Universiti Teknologi Malaysia Kuala Lumpur
    Jalan Semarak
    54100  Kuala Lumpur


Muller, R. H., Petersen, R. D., Hommoss, A., & Pardeike, J. 2007. Nanostructured Lipid Carriers (NLC) in Cosmetic Dermal Products. Adv Drug Deliv Rev. 59(6): 522-530.

Das, S., Ng, W. K., & Tan, R. B. 2012. Are Nanostructured Lipid Carriers (NLCs) Better than Solid Lipid Nanoparticles (SLNs): Development, Characterizations and Comparative Evaluations of Clotrimazole-loaded SLNs and NLCs? Eur J Pharm Sci. 47(1): 139-151.

Bose, S., Du, Y., Takhistov, P., & Michniak-Kohn, B. 2013. Formulation Optimization and Topical Delivery of Quercetin from Solid Lipid based Nanosystems. Int J Pharm. 441(1-2): 56-66.

Ghosh, A., Mandal, A. K., Sarkar, S., Panda, S., & Das, N. 2009. Nanoencapsulation of Quercetin Enhances Its Dietary Efficacy in Combating Arsenic-induced Oxidative Damage in Liver and Brain of Rats. Life Sciences. 84(3): 75-80.

Nayak, A. P., Tiyaboonchai, W., Patankar, S., Madhusudhan, B., & Suoto, E. B. 2010. Curcuminoids-loaded Lipid Nanoparticles: Novel Approach Towards Malaria Treatment. Colloids Surf. B Biointerfaces. 81: 263-273.

Saraf, S. Applications of Novel Drug Delivery System for Herbal Formulations. 2010. Fitoterapia. 81(7): 680-689.

Jia, D., Barwal, I., Thakur, S., & Yadav, S. C. 2015. Methodology to Nanoencapsulate Hepatoprotective Components from Picrorhiza Kurroa as Food Supplement. Food Bioscience. 9:28-35.

Strasser, M., Noriega, P., Löbenberg, R., Bou-Chacra, N., & Bacchi, E. M. 2014. Antiulcerogenic Potential Activity of Free and Nanoencapsulated Passiflora Serratodigitata L. Extracts. BioMed Research International.

Donsì, F., Annunziata, M., Sessa, M., & Ferrari, G. 2011. Nanoencapsulation of Essential Oils to Enhance Their Antimicrobial Activity in Foods. LWT-Food Sci Technol. 44(9): 1908-1914.

Yang, F. L., Li, X. G., Zhu, F., & Lei, C. L. 2009. Structural Characterization of Nanoparticles Loaded with Garlic Essential Oil and Their Insecticidal Activity Against Tribolium castaneum (Herbst)(Coleoptera: Tenebrionidae). J Agr Food Chem. 57(21): 10156-10162.

Shi, F., Wang, L., Shi, X. Q., & Feng, N. P. 2013. Evaluation of Entrapment Efficiency of the Solid Lipid Nanoparticles of Frankincense and Myrrh Essential Oil. Chinese Journal of New Drugs. 14: 027.

Severino, P., Andreani, T. V., Chaud, M. I., Benites, C. C., Pinho, S., & Souto, E. 2015. Essential Oils as Active Ingredients of Lipid Nanocarriers for Chemotherapeutic Use. Curr Pharm Biotechnol. 16(4): 365-370.

Yob, N. J., Jofrry, S. M., Affandi, M. M. R., The, L. K., Salleh, M. Z., & Zakaria, Z. A. 2011. Zingiber zerumbet (L.) Smith: A Review of Its Ethnomedicinal, Chemical, and Pharmacological Uses. Evi Based Complement Alternat Med.

Ruslay, S., Abas, F., Shaari. K., Zainal, Z., Sirat, H., Israf, D. A., & Lajis, N. H. 2007. Characterization of the Components Present in the Active Fractions of Health Gingers (Curcuma xanthorrhiza and Zingiber zerumbet) by HPLC–DAD–ESIMS. Food Chem. 104(3): 1183-1191.

Rout, K., Mishra, S., & Sherma, J. 2009. Development and Validation of an HPTLC Method for Analysis of Zerumbone, the Anticancer Marker from Zingiber Zerumbet. Acta Chromatographica. 21(3): 443-452.

Kirana, C., McIntosh, G. H., Record, I. R., & Jones, G. P. 2003. Antitumor Activity of Extract of Zingiber Aromaticum and Its Bioactive Sesquiterpenoid Zerumbone. Nutr Cancer. 45(2): 218-225.

Chien, T. Y., Chen, L. G., Lee, C. J., Lee, F. Y., & Wang, C. C. 2008. Anti-inflammatory Constituents of Zingiber zerumbet. Food Chem. 110(3): 584-589.

Sulaiman, M. R., Perimal, E. K., Akhtar, M. N., Mohamad, A. S., Khalid, M. H., Tasrip, N. A., & Israf, D. A. 2010. Anti-inflammatory Effect of Zerumbone on Acute and Chronic Inflammation Models in Mice. Fitoterapia. 81(7): 855-858.

Zakaria, Z. A., Mohamad, A. S., Chear, C. T., Wong, Y. Y., Israf, D. A., & Sulaiman, M. R. 2010. Anti-inflammatory and Antinociceptive Activities of Zingiber Zerumbet Methanol Extract in Experimental Model Systems. Medical Principles and Practice. 19(4): 287-294.

Kader, G., Nikkon, F., Rashid, M. A., & Yeasmin, T. 2011. Antimicrobial Activities of the Rhizome Extract of Zingiber Zerumbet Linn. Asian Pacific Journal of Tropical Biomedicine. 1(5): 409-412.

Chang, C. J., Tzeng, T. F., Liou, S. S., Chang, Y. S., & Liu, I. M. 2012. Regulation of Lipid Disorders by Ethanol Extracts from Zingiber Zerumbet in High-fat Diet-induced Rats. Food Chem. 132(1): 460-467.

Tzeng, T. F., Lu, H. J., Liou, S. S., Chang, C. J., & Liu, I. M. 2014. Lipid-lowering Effects of Zerumbone, a Natural Cyclic Sesquiterpene of Zingiber zerumbet Smith, in High-fat Diet-induced Hyperlipidemic Hamsters. Food Chem Toxicol. 69: 132-139.

Tzeng, T. F., & Liu, I. M. 2013. 6-Gingerol Prevents Adipogenesis and the Accumulation of Cytoplasmic Lipid Droplets in 3T3-L1 Cells. Phytomedicine. 20(6): 481-487.

Somchit, M. N., Shukriyah, M. H. N., Bustamam, A. A., & Zuraini, A. 2005. Anti-pyretic and Analgesic Activity of Zingiber Zerumbet. International Journal of Pharmacology. 1(3): 277-280.

Baby, S., Dan, M., Thaha, A. R., Johnson, A. J., Kurup, R., Balakrishnapillai, P., & Lim, C. K. 2009. High Content of Zerumbone in Volatile Oils of Zingiber Zerumbet from Southern India and Malaysia. Flavour Frag J. 24(6): 301-308.

Singh, C. B., Nongalleima, K., Brojendrosingh, S., Ningombam, S., Lokendrajit, N., & Singh, L. W. 2012. Biological and Chemical Properties of Zingiber Zerumbet Smith: A Review. Phytochemistry Reviews. 11(1): 113-125.

Verma, H., Prasad, S. B., & Yashwant, S. H. 2013. Herbal Drug Delivery System: A Modern Era Prospective. Int J Current Pharma Rev Res. 4: 88-101.

Montgomery, D.C. 2008. Design and Analysis of Experiments. John Wiley & Sons.

Zhang, X., Liu, J., Qiao, H., Liu, H., Ni, J., Zhang, W., & Shi, Y. 2010. Formulation Optimization of Dihydroartemisinin Nanostructured Lipid Carrier Using Response Surface Methodology. Powder Technology. 197(1): 120-128.

Liu, C. H., & Wu, C. T. 2010. Optimization of Nanostructured Lipid Carriers for Lutein Delivery. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 353(2): 149-156.

Varshosaz, J., Eskandari, S., & Tabakhian, M. 2010. Production and Optimization of Valproic Acid Nanostructured Lipid Carriers by the Taguchi Design. Pharmaceutical Development and Technology. 15(1): 89-96.

Negi, L. M., Jaggi, M., & Talegaonkar, S. 2013. A Logical Approach to Optimize the Nanostructured Lipid Carrier System of Irinotecan: Efficient Hybrid Design Methodology. Nanotechnology. 24(1): 015104.

Nur Ayshah Rosli, Rosnani Hasham, Azila Abdul Aziz & Ramlan Aziz. 2015. Formulation and Characterization Of Nanostructured Lipid Carrier Encapsulated Zingiber Zerumbet Oil Using Ultrasonication Technique. Journal of Advanced Research in Applied Mechanics. 11(1): 16-23.

Chandan, C., & Maheshwari, R. K. 2013. Mixed Solvency Concept in Reducing Surfactant Concentration of Self-Emulsifying Drug Delivery Systems of Candesartan Cilexetil using D-optimal Mixture Design. Asian J Pharms. 7(2): 83.

Doktorovova, S., Araujo, J., Garcia, M. L., Rakovsky, E., & Souto, E. B. 2010. Formulating Fluticasone Propionate in Novel PEG-Containing Nanostructured Lipid Carriers (PEG-NLC). Colloids Surf B Biointerfaces. 75(2): 538-542.

Shete, H., & Patravale, V. 2013. Long Chain Lipid Based Tamoxifen NLC. Part I: Preformulation Studies, Formulation Development And Physicochemical Characterization. Int J Pharm. 454(1): 573-583.

Pollastri, S., Gualtieri, A. F., Gualtieri, M. L., Hanuskova, M., Cavallo, A., & Gaudino, G. 2014. The Zeta Potential of Mineral Fibres. J Hazard Mater. 276: 469-479.

Norhayati Mohamed Noor, Azila Abd. Aziz, Mohamad Roji Sarmidi, Ramlan Aziz. 2013. The Effect of Virgin Coconut Oil Loaded Solid Lipid Particles (VCO-SLPs) on Skin Hydration and Skin Elasticity. Jurnal Teknologi. 62(1): 39-43.

Dubey, A., Prabhu, P., Kamath, J. V. 2012. Nano Structured Lipid Carriers a Novel Topical Drug Delivery System. Int. J. Pharmtech. Res. 4(2): 705-714.

Gomes, M. J., Martins, S., Ferreira, D., Segundo, M. A., & Reis, S. 2014. Lipid Nanoparticles for Topical and Transdermal Application for Alopecia Treatment: Development, Physicochemical Characterization, and in Vitro Release and Penetration Studies. Int J Nanomedicine. 9: 1231-1242.

Manea, A. M., Vasile, B. S., & Meghea, A. 2014. Antioxidant and Antimicrobial Activities of Green Tea Extract Loaded into Nanostructured Lipid Carriers. Comptes Rendus Chimie. 17.4: 331-341.

Takashi, U., Wesam, R. K., Sayumi, K., Hiroaki, T., Takeshi, O., & Kenji, S. 2015. Prediction of Skin Permeation by Chemical Compounds Using the Artificial Membrane, Strat-Mâ„¢. European Journal of Pharmaceutical Sciences. 67: 113-118.

Hansen, S., Lehr, C. M., & Schaefer, U. F. 2013. Improved Input Parameters for Diffusion Models of Skin Absorption. Adv Drug Deliv Rev. 65: 251-264.






Science and Engineering

How to Cite