MULTIWALLED CARBON NANOTUBES ENHANCING NITROGEN UPTAKE AND USE EFFICIENCY OF UREA FERTLIZER BY PADDY

Authors

  • Azizah Shaaban Engineering Materials Department, Faculty of Manufacturing Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia
  • Norazlina Mohamad Yatim Engineering Materials Department, Faculty of Manufacturing Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia
  • Mohd Fairuz Dimin Engineering Materials Department, Faculty of Manufacturing Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia
  • Faridah Yusof Department of Biotechnology Engineering, Kulliyah of Engineering, International Islamic University Malaysia, Kuala Lumpur, Malaysia
  • Jeefferie Abd Razak Engineering Materials Department, Faculty of Manufacturing Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia

DOI:

https://doi.org/10.11113/jt.v79.11292

Keywords:

Urea, functionalized MWCNTs, nitrogen uptake, nitrogen use efficiency

Abstract

Efficient use of urea fertilizer (UF) as important nitrogen (N) source in the world's rice production has been a concern for the economic sustainability of cropping systems. The use of carbon-based materials to enhance UF efficiency still facing a great challenge. Hence, N Nano-carrier is developed based on functionalized multiwall carbon nanotubes (f-MWCNTs) grafted with UF to produce urea-multiwall carbon nanotubes (UF-MWCNTs) for enhancing the nitrogen uptake (NU) and use efficiency (NUE). The grafted N was found efficiently absorbed and utilized by rice, and overcome the N propensity for loss from soilâ€plant systems when UF-MWCNTs are applied. The UF-MWCNTs shown tremendous NUE up to 96% and NU at 1180mg/pot. The chemical changes were monitored by Raman spectroscopy. Hence, UF-MWCNTs provides a promising strategy in enhancing plant nutrition for rice.

References

Trenkel, M. E. 2010. Slow and Controlled released and Stabilized Fertilizer An Option for Enhancing Nitrogen Use Efficiency in Agriculture. 2nd Edition. International Fertilizer Industry Association, Parisvol. Vol. 53.

Maene, L. M. 1995. Of The 45th Annual Meeting Fertilizer Industry Roundtable.

Li, Z.-Z., Chen, J.-F., Liu, F., Liu, A.-Q., Wang, Q., Sun, H.-Y., and Wen, L.-X. 2007. Study of UV-shielding Properties of Novel Porous Hollow Silica Nanoparticle Carriers for Avermectin. Pest Manag. Sci. 63(3): 241-246.

Vijayakumar, P. S., Abhilash, O. U., Khan, B. M., and Prasad, B. L. V. 2010. Nanogold-Loaded Sharp-Edged Carbon Bullets as Plant-Gene Carriers. Advance Functional Material. 20(15): 2416-2423.

Anguita, J. V., Cox, D. C., Ahmad, M., Tan, Y. Y., Allam, J., and Silva, S. R. P. 2013. Highly Transmissive Carbon Nanotube Forests Grown at Low Substrate Temperature. Advance Functional Material. 23(44): 5502-5509.

Liu, Q., Chen, B., Wang, Q., Shi, X., Xiao, Z., Lin, J., and Fang, X. 2009. Carbon Nanotubes as Molecular Transporters for Walled Plant Cells. Nano Letter. 9(3): 1007-1010.

Xiao Qiang, Z. J. F., Zhang Shu Qing, Zhang Dao Fu, Wang Yu Jun. 2008. Effects of Slow/Controlled Release Fertilizers Felted and Coated by Nanomaterials on Crop Yield and Quality. Plant Nutrition Fertilizer Science. 5: 951-955.

Liu, Z. M., J.; Zhang, Y.D.; Zhang. 2008. Study on Application of Nanometer Biotechnology on the Yield and Quality of Winter Wheat. J. Anhui Agric. Science. 35: 15578-15580.

Yin-fei, Q., Cai-hong, S., Cai-fei, Q., Xian-mao, C., L. Si-liang, Z. Wei-dong, and Chun-rui, P. 2010. Primarily Study of the Effects of Nanometer Carbon Fertilizer Synergist on the Late Rice. Acta Agric. Boreali-Sinica. (S2): 249-253.

Zhang, J., Li, Z.-H., Li, K., Huang, W., and Sang, L.-H. 2012. Nitrogen Use Efficiency under Different Field Treatments on Maize Fields in Central China: A Lysimeter and 15N Study. J. Water Resour. Prot. 4(8): 590-596.

Bokobza, L. and Zhang, J. 2012. Raman Spectroscopic Characterization of Multiwall Carbon Nanotubes and of Composites. eXPRESS Polym. Letter. 6(7): 601-608.

Duesberg, G. S., Loa, I., Burghard, M., Syassen, K., and Roth, S. 2000. Polarized raman Spectroscopy on Isolated Single-Wall Carbon Nanotubes. Phys. Rev. Letter. 85(25): 5436-5439.

Syrgiannis, Z., Bonasera, A., Tenori, E., La Parola, V., Hadad, C., Gruttadauria, M., Giacalone, F., and Prato, M. 2015. Chemical Modification of Carbon Nanomaterials (SWCNTs, DWCNTs, MWCNTs and SWCNHs) with Diphenyl Dichalcogenides. Nanoscale. 7(14): 6007-6013.

Botti, S., Laurenzi, S., Mezi, L. Rufoloni, A. and Santonicola, M. G. 2015. Surface-enhanced Raman Spectroscopy Characterisation of Functionalised Multi-walled Carbon Nanotubes. Phys. Chem. Chem. Phys. 17(33): 21373-21380.

Zhou, W., Sasaki, S., and Kawasaki, A. 2014. Effective Control of Nanodefects in Multiwalled Carbon Nanotubes by Acid Treatment. Carbon N. Y. 78: 121-129.

Rebelo, S. L. H., Guedes, A., Lipińska, M. E., Pereira, A. M., Araujo, J. P., and Freire, C. 2016. Progresses on the Raman spectra Analysis of Covalently Functionalized Multiwall Carbon Nanotubes: Unraveling Disorder on Graphitic Materials. Phys. Chem. Chem. Phys. 18: 12784-12796.

Mowry, M., Dennis, Palaniuk, Claudia, C. Luhrs, Sebastian, and Osswald. 2013. In Situ Raman Spectroscopy and Thermal Analysis of the formation of Nitrogen-doped Graphene from Urea and Graphite Oxide. R. Soc. Chem. 3(44): 21763-21775.

Hoccart, X. and Turrell, G. 1993. Raman Spectroscopic Investigation of the Dynamics Of Urea–water Complexes. J. Chem. Phys. 99(11): 8498.

Frost, R. L., Kristof, J., Rintoul, L., and Kloprogge, J. T. 2000. Raman Spectroscopy of Urea and Urea-intercalated Kaolinites at 77 K. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 56A(9): 1681-1691.

Hashim, M. M., Yusop, M. K., Othman, R., and Wahid, S. A. 2015. Characterization of Nitrogen Uptake Pattern in Malaysian Rice MR219 at Different Growth Stages Using 15N Isotope. Rice Sci. 22(5): 250-254.

Khodakovskaya, Dervishi, M., E., Mahmood, M., Xu, Li, Y., Z., Watanabe, F., and Biris, A. S. 2009. Carbon Nanotubes Are Able To Penetrate Plant Seed Coat and Dramatically Affect Seed Germination and Plant Growth. ACS Nano. 3(10): 3221-3227.

Glass, A. D. M. 2003. Nitrogen Use Efficiency of Crop Plants: Physiological Constraints upon Nitrogen Absorption. CRC. Crit. Rev. Plant Sci. 22(5): 453-470.

Gupta, N., Gupta, A. K., Gaur, V. S., and Kumar, A. 2012. Relationship of Nitrogen Use Efficiency with the Activities of Enzymes Involved in Nitrogen Uptake and Assimilation of Finger Millet Genotypes Grown Under Different Nitrogen Inputs. ScientificWorldJournal. 2012: 625731.

Downloads

Published

2017-07-19

How to Cite

MULTIWALLED CARBON NANOTUBES ENHANCING NITROGEN UPTAKE AND USE EFFICIENCY OF UREA FERTLIZER BY PADDY. (2017). Jurnal Teknologi, 79(5-2). https://doi.org/10.11113/jt.v79.11292