EFFECT OF VOLTAGE ON TIO2 NANOTUBES FORMATION IN ETHYLENE GLYCOL SOLUTION

Authors

  • Syahriza Ismail Carbon Research Technology Group, Faculty of Manufacturing Engineering, Universiti Teknikal Malaysia Melaka, Malaysia
  • Khairil Azwa Khairul Carbon Research Technology Group, Faculty of Manufacturing Engineering, Universiti Teknikal Malaysia Melaka, Malaysia
  • Nurul Asyikin Ahmad Nor Hisham Carbon Research Technology Group, Faculty of Manufacturing Engineering, Universiti Teknikal Malaysia Melaka, Malaysia
  • Md Shuhazlly Mamat Department of Physics, Faculty of Science, Universiti Putra Malaysia, Selangor, Malaysia
  • Mohd Asyadi Azam Carbon Research Technology Group, Faculty of Manufacturing Engineering, Universiti Teknikal Malaysia Melaka, Malaysia

DOI:

https://doi.org/10.11113/jt.v79.11294

Keywords:

TiO2 nanotubes, anodization, crystallization, anatase

Abstract

The crystalline phase of the TiO2 nanotubes without further heat treatment were studied. The TiO2 nanotube arrays were produced by anodization of Ti foil at three different voltage; 10, 40, and 60 V in a bath with electrolytes composed of ethylene glycol (EG), ammonium fluoride (NH4F), and hydrogen peroxide (H2O2). The H2O2 is a strong oxidizing agent which was used as oxygen provider to increase the oxidation rate for synthesizing highly ordered and smooth TiO2 nanotubes. Anodization at voltage greater than 10 V leads to the formation of tubular structure where higher anodization voltage (~ 60 V) yield to larger tube diameter (~ 180 nm). Crystallinity of the nanotubes is improved as the voltage was increased. The transformation of amorphous to anatase can be obtained for as anodized TiO2 without any heat treatment. The Raman spectra results show the anodization at 40 V and 60 V gives anatase peak in which confirms the crystalline phase. The stabilization of the crystalline phase is due to the oxygen vacancies and ionic mobilities during the anodization at high voltage. 

References

Tang, Y., Zhang, Y., Deng, J., Wei, J., Tam, H. L., Chandran, B. K., Dong, Z., & Chen, X. 2014. Mechanical Forceâ€Driven Growth of Elongated Bending Tio2â€Based Nanotubular Materials for Ultrafast Rechargeable Lithium Ion Batteries. Advanced Materials. 26(35): 6111-6118.

Liu, N., Schneider, C., Freitag, D., Hartmann, M., Venkatesan, U., Müller, J., Spiecker, E., & Schmuki, P. 2014. Black TiO2 Nanotubes: Cocatalyst-Free Open-Circuit Hydrogen Generation. Nano Letters. 14(6): 3309-3313.

Chen, B., Hou, J., & Lu, K. 2013. Formation Mechanism of TiO2 Nanotubes and Their Applications in Photoelectrochemical Water Splitting and Supercapacitors. Langmuir. 29(19): 5911-5919.

Lin, Z. A., Lu, W. C., Wu, C. Y., & Chang, K. S. 2014. Facile Fabrication and Tuning of TiO2 Nanoarchitectured Morphology Using Magnetron Sputtering and Its Applications to Photocatalysis. Ceramics International. 40(10): 15523-15529.

Boercker, J. E., Enache-Pommer, E., & Aydil, E. S. 2008. Growth Mechanism of Titanium Dioxide Nanowires for Dye-Sensitized Solar Cells. Nanotechnology. 19(9): 095604.

Joseph, S., & Sagayaraj, P. 2015. A Cost Effective Approach for Developing Substrate Stable TiO2 Nanotube Arrays with Tuned Morphology: A Comprehensive Study on the Role of H2O2 and Anodization Potential. New Journal of Chemistry. 39(7): 5402-5409.

Sreekantan, S., Wei, L. C., & Lockman, Z. 2011. Extremely Fast Growth Rate of TiO2 Nanotube Arrays in Electrochemical Bath Containing H2O2. Journal of the Electrochemical Society. 158(12): C397-C402.

Cai, Q., Paulose, M., Varghese, O. K., & Grimes, C. A. 2005. The Effect of Electrolyte Composition on the Fabrication of Self-Organized Titanium Oxide Nanotube Arrays by Anodic Oxidation. Journal of Materials Research. 20(01): 230-236.

Lockman, Z., Ismail, S., Sreekantan, S., Schmidt-Mende, L., & MacManus-Driscoll, J. L. 2009. The Rapid Growth of 3 µm Long Titania Nanotubes by Anodization of Titanium in a Neutral Electrochemical Bath. Nanotechnology. 21(5): 055601.

Mor, G. K., Varghese, O. K., Paulose, M., Shankar, K., & Grimes, C. A. 2006. A Review on Highly Ordered, Vertically Oriented TiO2 Nanotube Arrays: Fabrication, Material Properties, and Solar Energy Applications. Solar Energy Materials and Solar Cells. 90(14): 2011-2075.

Mahajan, V. K., Misra, M., Raja, K. S., & Mohapatra, S. K. 2008. Self-Organized TiO2 Nanotubular Arrays for Photoelectrochemical Hydrogen Generation: Effect of Crystallization and Defect Structures. Journal of Physics D: Applied Physics. 41(12): 125307.

Fang, D., Luo, Z., Huang, K., & Lagoudas, D. C. 2011. Effect of Heat Treatment on Morphology, Crystalline Structure and Photocatalysis Properties of TiO2 Nanotubes on Ti Substrate and Freestanding Membrane. Applied Surface Science. 257(15): 6451-6461.

Regonini, D., Jaroenworaluck, A., Stevens, R., & Bowen, C. R. 2010. Effect of Heat Treatment on the Properties and Structure of TiO2 Nanotubes: Phase Composition and Chemical Composition. Surface and Interface Analysis. 42(3): 139-144.

Hardcastle, F. D. 2011. Raman Spectroscopy of Titania (TiO2) Nanotubular Water-Splitting Catalysts. J Ark Acad Sci. 65: 43-48.

Dyer, C. K., & Leach, J. S. L. 1978. Breakdown and Efficiency of Anodic Oxide Growth on Titanium. Journal of the Electrochemical Society. 125(7): 1032-1038.

Habazaki, H., Uozumi, M., Konno, H., Shimizu, K., Skeldon, P., & Thompson, G. E. 2003. Crystallization of Anodic Titania on Titanium and Its Alloys. Corrosion Science. 45(9): 2063-2073.

Matykina, E., Arrabal, R., Skeldon, P., Thompson, G. E., & Habazaki, H. 2008. Influence of Grain Orientation on Oxygen Generation in Anodic Titania. Thin Solid Films. 516(8): 2296-2305.

Downloads

Published

2017-07-19

How to Cite

EFFECT OF VOLTAGE ON TIO2 NANOTUBES FORMATION IN ETHYLENE GLYCOL SOLUTION. (2017). Jurnal Teknologi (Sciences & Engineering), 79(5-2). https://doi.org/10.11113/jt.v79.11294