NUMBER OF COMPATIBLE PAIR OF ACTIONS FOR FINITE CYCLIC GROUPS OF P-POWER ORDER

Authors

  • Mohammed Khalid Shahoodh Applied & Industrial Mathematics (AIMs) Research Cluster, Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang Darul Makmur
  • Mohd Sham Mohamad UApplied & Industrial Mathematics (AIMs) Research Cluster, Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang Darul Makmur
  • Yuhani Yusof Applied & Industrial Mathematics (AIMs) Research Cluster, Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang Darul Makmur
  • Sahimel Azwal Sulaiman Applied & Industrial Mathematics (AIMs) Research Cluster, Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang Darul Makmur

DOI:

https://doi.org/10.11113/jt.v80.11317

Keywords:

Nonabelian tensor product, cyclic groups, automorphism group, compatible actions, number theory

Abstract

The compatible actions played an important role before determining the nonabelian tensor product of groups. Different compatible pair of actions gives a different nonabelian tensor product even for the same group. The aim of this paper is to determine the exact number of the compatible pair of actions for the finite cyclic groups of p-power order where p is an odd prime. By using the necessary and sufficient number theoretical conditions for a pair of the actions to be compatible with the actions that have p-power order, the exact number of the compatible pair of actions for the finite cyclic groups of p-power order has been determined and given as a main result in this paper.  

 

References

Brown, R. and Loday, J. L. 1984. Excision homotopique en basse dimension, CR Acad. Sci. Paris SI Math. 298(15): 353- 356.

Brown, R., Johnson, D. L. and Robertson, E. F. 1987. Some Computations of Non-Abelian Tensor Products of Groups. Journal of Algebra. 11(1):177-202.

Kappe, L. C. 1997. Nonabelian Tensor Products of Groups: The Commutator Connection. London Mathematical Society Lecture Note Series. 447-454.

Ellis, G. and McDermott, A. 1998. Tensor Products of Prime Power Groups. Journal of Pure and Applied Algebra. 132(2): 119-128.

Visscher, M. P. 1998. On the Nonabelian Tensor Product of Groups. Dissertation. State University of New York.

Mohamad, M. S. 2012. Compatibility Conditions and Nonabelian Tensor Products of Finite Cyclic Groups of p-Power Order. PhD Thesis. Universiti Teknologi Malaysia.

Mohamad, M. S., Sarmin, N. H., Ali, N. M. M., and Kappe, L. C. 2012. The Computation of the Nonabelian Tensor Product of Cyclic Group of Order Journal Teknologi. 57(1).

Sulaiman, S. A., Mohamad, M. S., Yusof, Y., Sarmin, N. H., Ali, M. M. N., Ken, T. L., and Ahmad, T. 2015. Compatible Pair of Nontrivial Actions for Some Cyclic Groups of 2-Power Order. The 2nd ISM International Statistical Conference 2014 (ISM-II): Empowering the Applications of Statistical and Mathematical Sciences. AIP Publishing. 1643: 700-705.

Sulaiman, S. A., Mohamad, M. S., Yusof, Y and Shahoodh, M. K. 2016. Compatible Pair of Nontrivial Action for Finite Cyclic 2-Groups. The National Conference for Postgraduate Research 2016, Universiti Malaysia Pahang. p005: 39-42.

Mohamad, M. S., Sulaiman, S. A., Yusof, Y. and Shahoodh, M. K. 2017. Compatible Pair of Actions for Two Same Cyclic Groups of 2-Power Order. IOP Conf. Series: Journal of Physics: Conf. Series 890 (2017) 012120

Sulaiman, S. A., Mohamad, M. S., Yusof, Y. and Shahoodh, K. M. 2017. The Number of Compatible Pair of Actions for Cyclic Groups of 2-Power Order. International Journal of Simulation, System, Sciences and Technology. 18(4): 1473- 8031.

Shahoodh, K. M., Mohamad, M. S., Yusof, Y. and Sulaiman, S. A. 2017. Number of Compatible Pair of Actions for Finite Cyclic Groups of 3-Power Order.†International Journal of Simulation, System, Sciences and Technology. 18(4): 1473- 8031.

http://www.gap-system.org.The GAP Group, GAP-Groups, Algorithm and programming. Version 4.7, 2015.

Dummit, D. S and Foote, R. M. 2004. Abstract Algebra. USA: John Wiley and Sons.

Burton, D. 2005. Elementary Number Theory. Sixth Edition. USA: McGraw Hill.

Downloads

Published

2018-06-06

Issue

Section

Science and Engineering

How to Cite

NUMBER OF COMPATIBLE PAIR OF ACTIONS FOR FINITE CYCLIC GROUPS OF P-POWER ORDER. (2018). Jurnal Teknologi (Sciences & Engineering), 80(5). https://doi.org/10.11113/jt.v80.11317