CHARACTERIZATION OF TAPIOCA STARCH PLASTICIZED BY 1-ETHYL-3-METHYLIMIDAZOLIUM ACETATE

Authors

  • Shajaratuldur Ismail Department of Chemical Engineering, Universiti Teknologi Petronas, Perak, Malaysia
  • Nurlidia Mansor Department of Chemical Engineering, Universiti Teknologi Petronas, Perak, Malaysia
  • Zakaria Man Department of Chemical Engineering, Universiti Teknologi Petronas, Perak, Malaysia
  • Khairun Azizi Azizli Department of Chemical Engineering, Universiti Teknologi Petronas, Perak, Malaysia

DOI:

https://doi.org/10.11113/jt.v79.11319

Keywords:

Starch, Ionic liquid, 1-ethyl-3-methylimidazolium acetate, Plasticizer, Gelatinization

Abstract

Starch is one of natural materials that been used for producing biodegradable materials. The starch-based materials are produced through a process known as gelatinization with the presence of plasticizer and elevated temperature. Properties of starch-based materials are lacking in terms of viscosity, water absorption, thermal and mechanical properties compare with synthetic materials. Researchers are involved in finding ways for improvement of starch-based materials properties and one of that is introducing new plasticizer. 1-ethyl-3-methylimidazolium acetate, [Emim][OAc] is an ionic liquid that used as plasticizer to produce thermoplastic starch. Starch plasticized by [Emim][OAc] were prepared with different total plasticizer contents (50%,70%) and [Emim][OAc]/water ratio (1:6,1:4,2:3 wt%). The thermoplastic starches were characterized in terms of morphology, crystalline structure and thermal degradation. The results showed that 70% of total plasticizer contents were mixed well during gelatinization process. [Emim][OAc] contributed to granule disruption as shown by SEM. Based on the XRD analysis, it was shown that thermoplastic starch at 70% total plasticizer contents and 1:4 wt% ratio of [Emim][OAc]/water, caused disruption of the A-type crystalline structure, generated VH-type crystalline structure and thus increased the mobility of the amorphous starch. The presence of [Emim][OAc] promotes the thermal degradation of starch molecules as described by TGA. Therefore, plasticizer contents and [Emim][OAc]/water ratio are vital parameters that influences the properties of thermoplastic starch.

References

Johar, N., & Ahmad, I. 2012. Morphological, Thermal, and Mechanical Properties of Starch Biocomposite Films Reinforced by Cellulose Nanocrystals from Rice Husks. BioResources. 7(4): 5469-5477.

Wu, G., E. Sun, H. Huang, Z. Chang, & Y. Xu. 2013. Preparation and Properties of Biodegradable Planting Containers Made with Straw and Starch Adhesive. BioResources. 8(4): 5358-5368.

García, N. L., L. Ribba, A. Dufresne, M. Aranguren, & S. Goyanes. 2011. Effect of Glycerol on the Morphology of Nanocomposites Made from Thermoplastic Starch and Starch Nanocrystals. Carbohydrate Polymers. 84(1): 203-210.

Yu, L., K. Dean, & L. Li. 2006. Polymer Blends and Composites from Renewable Resources. Progress in Polymer Science. 31(6): 576-602.

Zullo, R., & Iannace, S. 2009. The Effects of Different Starch Sources and Plasticizers on Film Blowing of Thermoplastic Starch: Correlation Among Process, Elongational Properties And Macromolecular Structure. Carbohydrate Polymers. 77(2): 376-383.

Fu, Z. Q., L. J. Wang, D. Li, Q. Wei, & B. Adhikari. 2011. Effects of High-pressure Homogenization on the Properties of Starch-plasticizer Dispersions and Their Films. Carbohydrate Polymers. 86(1): 202-207.

Jane. J. 2009. Structural Features of Starch Granules II. Starch: Chemistry and Technology. 3.

Pérez, S., P. M. Baldwin, & Gallant, D. J. 2009. Structural Features of Starch Granules I. Starch: Chemistry and Technology. 3.

Pérez, S., & Bertoft, E. 2010. The Molecular Structures of Starch Components and Their Contribution to the Architecture of Starch Granules: A Comprehensive Review. Starchâ€Stärke. 62(8): 389-420.

Atwell, W. A., & Thomas, D. J. 1997. Starches. St. Paul, MN: American Association of Cereal Chemists. 25-30.

Xie, F., B. M. Flanagan, M. Li, R. W. Truss, P. J. Halley, M. J. Gidley, & R. D. Rogers. 2015. Characteristics of Starch-based Films with Different Amylose Contents Plasticised by 1-ethyl-3-methylimidazolium Acetate. Carbohydrate Polymers. 122: 160-168.

Averous, L. 2004. Biodegradable Multiphase Systems based on Plasticized Starch: A Review. Journal of Macromolecular Science, Part C: Polymer Reviews. 44(3): 231-274.

Liu, H., F. Xie, L. Yu, L. Chen, & L. Li. 2009. Thermal Processing of Starch-based Polymers. Progress in Polymer Science. 34(12): 1348-1368.

Lomelí-Ramírez, M. G., S. G. Kestur, R. Manríquez-González, S. Iwakiri, G. B. de Muniz, & T. S. Flores-Sahagun. 2014. Bio-composites of cassava Starch-green Coconut Fiber: Part II—Structure and Properties. Carbohydrate Polymers. 102: 576-583.

Xie, F., P. J. Halley, & L. Avérous. 2012. Rheology to Understand and Optimize Processibility, Structures and Properties of Starch Polymeric Materials. Progress in Polymer Science. 37(4): 595-623.

Xie, F., E. Pollet, P. J. Halley, & L. Avérous. 2013. Starch-based Nano-biocomposites. Progress in Polymer Science. 38(10): 1590-1628.

Krogars, K., J. Heinämäki, M. Karjalainen, J. Rantanen, P. Luukkonen, & J. Yliruusi. 2003. Development and Characterization of Aqueous Amylose-rich Maize Starch Dispersion for Film Formation. European Journal of Pharmaceutics and Biopharmaceutics. 56(2): 215-221.

McGlashan, S. A., & Halley, P. J. 2003. Preparation and Characterisation of Biodegradable Starchâ€based Nanocomposite Materials. Polymer International. 52(11): 1767-1773.

Poutanen, K., & Forssell, P. 1996. Modification of Starch Properties with Plasticizers. Trends in Polymer Science. 4(4): 128-132.

Han, S., J. Li, S. Zhu, R. Chen, Y. Wu, X. Zhang, & Z. Yu. 2009. Potential Applications of Ionic Liquids in Wood Related Industries. Bioresources. 4(2): 825-834.

Liebert, T., & Heinze, T. 2008. Interaction of Ionic Liquids with Polysaccharides. 5. Solvents and Reaction Media for the Modification of Cellulose. BioResources. 3(2): 576-601.

Shamsuri, A. A., & Abdullah, D. K. 2010. Isolation and Characterization of Lignin from Rubber Wood in Ionic Liquid Medium. Modern Applied Science. 4(11): 19.

Shamsuri, A. A., & Daik, R. 2012. Plasticizing Effect of Choline Chloride/Urea Eutectic-based Ionic Liquid on Physicochemical Properties of Agarose Films. BioResources. 7(4): 4760-4775.

Biswas, A., R. L. Shogren, D. G. Stevenson, J. L. Willett, & P. K. Bhowmik. 2006. Ionic Liquids as Solvents for Biopolymers: Acylation of Starch and Zein Protein. Carbohydrate Polymers. 66(4): 546-550.

El Seoud, O. A., A. Koschella, L. C. Fidale, S. Dorn, & T. Heinze. 2007. Applications of Ionic Liquids in Carbohydrate Chemistry: A Window of Opportunities. Biomacromolecules. 8(9): 2629-2647.

Wilpiszewska, K., & Spychaj, T. 2011. Ionic Liquids: Media for Starch Dissolution, Plasticization and Modification. Carbohydrate Polymers. 86(2): 424-428.

Zakrzewska, M. E., E. Bogel-Åukasik, & R. Bogel-Åukasik. 2010. Solubility of Carbohydrates in Ionic Liquids. Energy & Fuels. 24(2): 737-745.

Zhu, S., Y. Wu, Q. Chen, Z. Yu, C. Wang, S. Jin, & G. Wu. 2006. Dissolution of Cellulose with Ionic Liquids and Its Application: A Mini-Review. Green Chemistry. 8(4): 325-327.

Sankri, A., A. Arhaliass, I. Dez, A. C. Gaumont, Y. Grohens D. Lourdin, & E. Leroy. 2010. Thermoplastic Starch Plasticized by an Ionic Liquid. Carbohydrate Polymers. 82(2): 256-263.

Xie, F., B. M. Flanagan, M. Li, P. Sangwan, R. W. Truss, P. J. Halley, & J. L. Shamshina. 2014. Characteristics of Starch-based Films Plasticised by Glycerol and by the Ionic Liquid 1-ethyl-3-methylimidazolium Acetate: A Comparative Study. Carbohydrate Polymers. 111: 841-848.

Saengchan, K., M. Nopharatana, & W. Songkasiri. 2011. Influence of Feed Flow Rate on Tapioca Starch Perforation through Filter Medium in a Conical-screen Centrifuge. International Conference on Chemical, Ecology and Environmental Sciences (ICCEBS), 2011. Bangkok, Thailand. December 2011. 389-393.

Mohd Makhtar, N. S., M. N. Muhd Rodhi, M. Musa, & K. H. Ku Hamid. 2013. Thermal Behavior of Tacca Leontopetaloides Starch-based Biopolymer. International Journal of Polymer Science 2013.

Tajuddin, S., F. Xie, T. M. Nicholson, P. Liu, & P. J. Halley. 2011. Rheological Properties of Thermoplastic Starch Studied by Multipass Rheometer. Carbohydrate Polymers. 83(2): 914-919.

Chen, Y., S. Huang, Z. Tang, X. Chen, & Z. Zhang. 2011. Structural Changes of Cassava Starch Granules Hydrolyzed by a Mixture of Α-Amylase and Glucoamylase. Carbohydrate Polymers. 85(1): 272-275.

Taghizadeh, A., & Favis, B. D. 2013. Effect of High Molecular Weight Plasticizers on the Gelatinization of Starch Under Static and Shear Conditions. Carbohydrate Polymers. 92(2): 1799-1808.

Cheetham, N. W., & Tao, L. 1998. Variation in Crystalline Type with Amylose Content in Maize Starch Granules: An X-Ray Powder Diffraction Study. Carbohydrate Polymers. 36(4): 277-284.

Tan, I., B. M. Flanagan, P. J. Halley, A. K. Whittaker, & M. J. Gidley. 2007. A method for Estimating the Nature and Relative Proportions of Amorphous, Single, and Double-Helical Components in Starch Granules by 13C CP/MAS NMR. Biomacromolecules. 8(3): 885-891.

van Soest, J. J., R. C. Bezemer, D. de Wit, & J. F. Vliegenthart. 1996. Influence of Glycerol on the Melting of Potato Starch. Industrial Crops and Products. 5(1): 1-9.

Jiang, W., X. Qiao, & K. Sun. 2006. Mechanical and Thermal Properties of Thermoplastic Acetylated Starch/poly (ethylene-co-vinyl alcohol) Blends. Carbohydrate Polymers. 65(2): 139-143.

Rajan, A., V. S. Prasad, & T. E. Abraham. 2006. Enzymatic Esterification of Starch Using Recovered Coconut Oil. International Journal of Biological Macromolecules. 39(4): 265-272.

Rath, S. K., & Singh, R. P. 1998. On the Characterization of Grafted and Ungrafted Starch, Amylose, and Amylopectin. Journal of Applied Polymer Science. 70(9): 1795-1810.

Wilhelm, H. M., M. R. Sierakowski, G. P. Souza, & F. Wypych. 2003. Starch Films Reinforced with Mineral Clay. Carbohydrate Polymers. 52(2): 101-110.

Kärkkäinen, J., K. Lappalainen, P. Joensuu, & M. Lajunen. 2011. HPLC-ELSD Analysis of Six Starch Species Heat-dispersed in [BMIM] Cl Ionic Liquid. Carbohydrate Polymers. 84(1): 509-516.

Stevenson, D. G., A. Biswas, J. L. Jane, & G. E. Inglett. 2007. Changes in Structure and Properties of Starch of Four Botanical Sources Dispersed in the Ionic Liquid, 1-Butyl-3-Methylimidazolium Chloride. Carbohydrate Polymers. 67(1): 21-31.

Downloads

Published

2017-07-19

Issue

Section

Science and Engineering

How to Cite

CHARACTERIZATION OF TAPIOCA STARCH PLASTICIZED BY 1-ETHYL-3-METHYLIMIDAZOLIUM ACETATE. (2017). Jurnal Teknologi (Sciences & Engineering), 79(5-3). https://doi.org/10.11113/jt.v79.11319