A NEW DESIGN ENHANCES HYDROGEN PRODUCTION BY G. SULFURREDUCENS PCA STRAIN IN A SINGLE-CHAMBER MICROBIAL ELECTROLYSIS CELL (MEC)

Authors

  • Abudukeremu Kadier Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, National University of Malaysia (UKM), 43600 UKM Bangi, Selangor, Malaysia
  • Mohd Sahaid Kalil Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, National University of Malaysia (UKM), 43600 UKM Bangi, Selangor, Malaysia
  • Azah Mohamed Department of Electrical, Electronic and System Engineering, Faculty of Engineering and Built Environment, National University of Malaysia (UKM), Bangi 43600, Selangor, Malaysia
  • Aidil Abdul Hamid School of Biosciences and Biotechnology, Faculty of Science and Technology, National University of Malaysia (UKM) , 43600 UKM Bangi, Selangor, Malaysia

DOI:

https://doi.org/10.11113/jt.v79.11330

Keywords:

Microbial electrolysis cell (MEC), G. sulfurreducens PCA strain, hydrogen production rate (HPR), applied voltage (Eap), hydrogen recovery

Abstract

Microbial electrolysis cell (MEC) is an innovative and green technology to generate hydrogen from a wide range of renewable energy sources and wastewater. At current stage, the performance of these systems is still far from real-world applications. The most likely limiting factors for successful commercialization of this technology are the large internal resistance, high fabrication and operational costs. The aim of the present study was to enhance hydrogen production, reduce the construction and operational costs in MECs via development of a novel MEC design. A single-chamber membrane-free MEC was designed and successfully produced hydrogen from organic substrate using a pure culture: Geobacter sulfurreducens PCA. The MEC system was operated with Platinum (Pt) cathode at applied voltage range of 0.6 V to 1.1 V. Geobacter sulfurreducens PCA strain and sodium acetate used as inoculum and a fuel sources, respectively. The conductivity of electrolyte solution in the MEC was 4.5 mS/cm. Due to an improved the MEC reactor architecture, the maximum hydrogen production rate (HPR) of 3.67 ± 0.03 m3 H2 /m3 d with volumetric current density (IV) of 293.73 ± 1.18 A/m3 was achieved under an external applied voltage (Eap): 1.1 V. The highest overall hydrogen recovery ( ) and overall energy efficiency ( ) were 91.80 ± 1.06% and 66.97 ± 0.09%, respectively. 

References

Kadier, A., Kalil, M. S., Abdeshahian, P., Chandrasekhar, K., Mohamed, A., Azman, N. F., Logroño, W., Simayi, Y., Hamid, A. A. 2016. Recent Advances and Emerging Challenges Inmicrobial Electrolysis Cells (MECs) for Microbial Production of Hydrogen and Value-added Chemicals. Renew. Sust. Energ. Rev. 61: 501-525.

Balat, M. and Balat, M. 2009. Political, Economic and Environmental Impacts of Biomass-based Hydrogen. Int. J. Hydrogen Energy. 34: 3589-3603.

Lamb, R. 2010. When Will We Run Out of Oil, and What Happens Then? [Online]. From: http://science.howstuffworks.com/environmental/energy/run-out-of-oil.htm; [Accessed on 20 February 2016].

Azman, N. F., Abdeshahian, P., Kadier, A., Shukor, H., Al-Shorgani, N. K. N., Hamid, A. A., Kalil, M. S. 2016. Utilization of Palm Kernel Cake as a Renewable Feedstock for Fermentative Hydrogen Production. Renew. Energ. 93: 700-708.

Kadier, A., Kalil, M. S., Mohamed, A., Hasan, H. A., Abdeshahian, P., Fooladi, T., Hamid, A. A. 2017. Microbial Electrolysis Cells (MECs) as Innovative Technology for Sustainable Hydrogen Production: Fundamentals and Perspective Applications. Hydrogen Production Technologies. Sankir, M. and Sankir N. D. (eds.). Wiley-Scrivener Publishing LLC, USA. 407-458.

Cheng, S. and Logan, B. E. 2011. High Hydrogen Production Rate of Microbial Electrolysis Cell (MEC) with Reduced Electrode Spacing. Bioresour. Technol. 102: 3571-3574.

Abdeshahian, P., Al-Shorgani, N. K. N., Salih, N. K. M., Shukor, H., Kadier, A., Hamid, A. A., Kalil, M. S. 2016. The Production of Biohydrogen by a Novel Strain Clostridium sp. YM1 in Dark Fermentation Process. Int. J. Hydrogen Energy. 39: 12524-12531.

Kuppam, C., Pandit, S., Kadier, A., Dasagrandhi, C., Velpuri, J. 2017. Biohydrogen Production: Integrated Approaches to Improve the Process Efficiency. Microbial Applications Vol.1 - Bioremediation and Bioenergy. Kalia, V. C., Kumar, P. (Eds.). Springer: New York, London. 189-210.

Kadier, A., Abdeshahian, P., Simayi, Y., Ismail, M., Hamid, A. A., Kalil, M. S. 2015. Grey Relational Analysis for Comparative Assessment of Different Cathode Materials in Microbial Electrolysis Cells. Energy. 90: 1556-1562.

Schlapbach, L. and Züttel, A. 2001. Hydrogen-storage Materials for Mobile Applications. Nature. 414: 353-358.

Lin, C. Y., Lay, C. H., Chu, C. Y., Sen, B., Kumar, G. and Chen, C. C. 2012. Fermentative Hydrogen Production from Wastewaters: A Review and Prognosis. Int. J. Hydrogen Energy. 37(20): 15632-15642.

Kumar, G. and Lin, C. Y. 2014. Biogenic Hydrogen Conversion of De-oiled Jatropha Waste (DJW) via Anaerobic Sequencing Batch Reactor Operation: Process Performance, Microbial Insights and CO2 Reduction Efficiency. Sci. World. J. 2014: 1-9.

Azman, N. F., Abdeshahian, P., Kadier, A., Al-Shorgani, N. K. N., Salih, N. K. M., Lananan, I., Hamid, A. A., Kalil, M. S. 2016. Biohydrogen Production from De-oiled Rice Bran as Sustainable Feedstock in Fermentative Process. Int. J. Hydrogen Energy. 41: 145-156.

Lai, Z., Zhu, M., Yang, X., Wang, J. and Li S. 2014. Optimization of Key Factors Affecting Hydrogen Production from Sugarcane Bagasse by a Thermophilic Anaerobic Pure Culture. Biotechnol. Biofuels. 7(119): 1-11.

Kadier, A., Simayi, Y., Kalil, M. S., Abdeshahian, P. and Hamid, A. A. 2014. A Review of the Substrates Used in Microbial Electrolysis Cells (MECs) for Producing Sustainable and Clean Hydrogen Gas. Renew. Energ. 71: 466-472.

Pant, D., Singh, A., Bogaert, G. V., Olsen, S. I., Nigam, P. S., Diels, L. and Vanbroekhoven, K. 2012. Bioelectrochemical Systems (BES) for Sustainable Energy Production and Product Recovery from Organic Wastes and Industrial Wastewaters. RSC. Adv. 2: 1248-1263.

Rozendal, R. A., Hamelers, H. V. M., Molenkamp, R. J. and Buisman, C. J. N. 2007. Performance of Single Chamber Biocatalyzed Electrolysis with Different Types of Ion Exchange Membrances. Water Res. 41: 1984-1994.

Cheng, S. and Logan, B. E. 2007. Sustainable and Efficient Biohydrogen Production Via Electrohydrogenesis. Proc. Natl. Acad. Sci. USA. 104: 18871-18873.

Li, C. and Fang, H. H. P. 2007. Fermentative Hydrogen Production from Wastewater and Solid Wastes by Mixed Cultures. Crit. Rev. Env. Sci. Tec. 37: 1-39.

Selembo, P. A., Perez, J. M., Lloyd, W. A. and Logan, B. E. 2009. High Hydrogen Production from Glycerol or Glucose by Electrohydrogenesis Using Microbial Electrolysis Cells. Int. J. Hydrogen Energy 34: 5373-5381.

Lee, H. S. and Rittmann, B. E. 2010. Significance of Biological Hydrogen Oxidation in a Continuous Single-chamber Microbial Electrolysis Cell. Environ. Sci. Technol. 44: 948-954.

Picioreanu, C., Head, I. M., Katuri, K. P., van Loosdrecht, M. C. M. and Scott, K. 2007. A Computational Model for Biofilm-based Microbial Fuel Cells. Water Res. 41(13): 2921-2940.

Zhang, Y. and Angelidaki, I. 2014. Microbial Electrolysis Cells Turning to be Versatile Technology: Recent Advances and Future Challenges. Water Res. 56: 11-25.

Selembo, P. A., Merrill, M. D. and Logan, B. E. 2009. The Use of Stainless Steel and Nickel Alloys as Low-cost Cathodes in Microbial Electrolysis Cells. J. Power Sources. 190: 271-278.

Wang, A., Liu, W., Ren, N., Zhou, J. and Cheng, S. 2010. Key Factors Affecting Microbial Anode Potential in a Microbial Electrolysis Cell for H2 Production. Int. J. Hydrogen Energy 35: 13481-13487.

Jung, S. and Regan, J. M. 2011. Influence of External Resistance on Electrogenesis, Methanogenesis, and Anode Prokaryotic Communities In Microbial Fuel Cells. Appl Environ Microbiol. 77(2): 564-571.

Merrill, M. D. and Logan, B. E. 2009. Electrolyte Effects On Hydrogen Evolution and Solution Resistance in Microbial Electrolysis Cells. J. Power Sources. 191: 203-208.

Nam, J. Y. and Logan, B. E. 2012. Optimization of Catholyte Concentration and Anolyte pHs in Two Chamber Microbial Electrolysis Cells. Int. J. Hydrogen Energy. 37: 18622-18628.

Yossan, S., Xiao, L., Prasertsan, P. and He, Z. 2013. Hydrogen Production in Microbial Electrolysis Cells: Choice of Catholyte. Int. J. Hydrogen Energy. 38: 9619-9624.

Tartakovsky, B., Manuel, M. F., Wang, H. and Guiot, S. R. 2009. High Rate Membrane-Less Microbial Electrolysis Cell For Continuous Hydrogen Production. Int. J. Hydrogen Energy. 34: 672-677.

Kadier, A., Simayi, Y., Logroño, W. and Kalil, M. S. 2015. The Significance of Key Operational Variables to the Enhancement of Hydrogen Production in a Single-chamber Microbial Electrolysis Cell (MEC). Iran. J. Hydrogen Fuel Cell. 2(2): 85-97.

Liu, H., Grot, S., and Logan, B. E. 2005. Electrochemically Assisted Production of Hydrogen from Acetate. Environ. Sci. Technol. 39: 4317-4320.

Rozendal, R. A., Hamelers, H. V. M., Euverink, G. J. W., Metz, S. J. and Buisman, C. J. N. 2006. Principle and Perspectives of Hydrogen Production through Biocatalyzed Electrolysis. Int. J. Hydrogen Energy. 31: 1632-1640.

Kadier, A., Simay,i Y., Abdeshahian, P., Azman, N. F., Chandrasekhar, K., Kalil, M. S. 2016. A Comprehensive Review of Microbial Electrolysis Cells (MEC) Reactor Designs and Configurations for Sustainable Hydrogen Gas Production. Alexandria. Eng. J. 55: 427-443.

Jeremiasse, A. W., Hamelers, H. V. M., Saakes, M. and Buisman, C. J. N. 2010b. Ni Foam Cathode Enables High Volumetric H2 Production in a Microbial Electrolysis Cell. Int. J. Hydrogen Energy. 35: 12716-12723.

Ren, L., Siegert, M., Ivanov, I., Pisciotta, J. M. and Logan, B. E. 2013. Treatability Studies on Different Refinery Wastewater Samples Using High Throughput Microbial Electrolysis Cells (MECs). Bioresour. Technol. 136: 322-328.

Ren, L., Tokash, J. C., Regan, J. M. and Logan, B. E. 2012. Current Generation in Microbial Electrolysis Cells with Addition of Amorphous Ferric Hydroxide, Tween 80, or DNA. Int. J. Hydrogen Energy. 37: 16943-16950.

Logan, B. E., Cheng, S., Watson, V. and Estadt, G. 2008. Graphite Fiber Brush Anodes for Increased Power Production in Air Cathode Microbial Fuel Cells. Environ. Sci. Technol. 41: 3341-3346.

Call, D. F. and Logan, B. E. 2008. Hydrogen Production in a Single Chamber Microbial Electrolysis Cell (MEC) Lacking a Membrane. Environ. Sci. Technol. 42: 3401-3406.

Escapa, A., Gil-Carrera, L., García, V. and Morán, A. 2012. Performance of a Continuous Flow Microbial Electrolysis Cell (MEC) Fed with Domestic Wastewater. Bioresour. Technol. 117: 55-62.

Nam, J. Y, Tokash, J. C. and Logan, B. E. 2011. Comparison of Microbial Electrolysis Cells Operated with Added Voltage or by Setting the Anode Potential. Int. J. Hydrogen Energy 2011. 36: 10550-10556.

Lu, L., Xing, D. F. and Ren, N. Q. 2012. Bioreactor Performance and Quantitative Analysis of Methanogenic and Bacterial Community Dynamics In Microbial Electrolysis Cells During Large Temperature Fluctuations. Environ. Sci. Technol. 46: 6874-81.

Call, D. F., Wagner, R. C. and Logan, B. E. 2009. Hydrogen Production by Geobacter Species and a Mixed Consortium in a Microbial Electrolysis Cell. Appl. Environ. Microbiol. 75(24): 7579-7587.

Hu, H., Fan, Y. and Liu, H. 2008. Hydrogen Production Using Single-chamber Membrane-free Microbial Electrolysis Cells. Water. Res. 42: 4172-4178.

Li, X. H., Liang, D. W., Bai, Y. X., Fan, Y. T. and Hou, H. W. 2014. Enhanced H2 Production from Corn Stalk by Integrating Dark Fermentation and Single Chamber Microbial Electrolysis Cells With Double Anode Arrangement. Int. J. Hydrogen Energy. 39(17): 8977-8982.

Huang, L., Jiang, L., Wang, Q., Quan, X., Yang, J. and Chen, L. 2014. Cobalt Recovery with Simultaneous Methane and Acetate Production in Biocathode Microbial Electrolysis cells. Chem. Eng. J. 253: 281-290.

Liu, W. Z., Huang, S. C., Zhou, A. J., Zhou, G.Y., Ren, N. Q., Wang, A. J. and Zhuang G. Q. 2012. Hydrogen Generation in Microbial Electrolysis Cell Feeding with Fermentation Liquid of Waste Activated Sludge. Int J Hydrogen Energy. 37: 13859-13864.

Lu, L., Ren, N. Q., Zhao, X., Wang, H., Wu, D. and Xing, D. F. 2011. Hydrogen Production, Methanogen Inhibition and Microbial Community Structures in Psychrophilic Single Chamber Microbial Electrolysis Cells. Energy. Environ. Sci 4: 1329-1336.

Lalaurette, E., Thammannagowd, S., Mohagheghi, A., Maness, P. and Logan, B. E. 2009. Hydrogen Production from Cellulose in a Two-stage Process Combining Fermentation and Electrohydrogenesis. Int. J. Hydrogen Energy. 34(15): 6201-6210.

Tokash, J. C. and Logan, B. E. 2011. Electrochemical Evaluation of Molybdenum Disulfide as a Catalyst for Hydrogen Evolution in Microbial Electrolysis Cells. Int. J. Hydrogen Energy. 36: 9439-9445.

Logan, B. E. 2008. Microbial Fuel Cells. John Wiley & Sons: New Jersey.

Downloads

Published

2017-07-19

Issue

Section

Science and Engineering

How to Cite

A NEW DESIGN ENHANCES HYDROGEN PRODUCTION BY G. SULFURREDUCENS PCA STRAIN IN A SINGLE-CHAMBER MICROBIAL ELECTROLYSIS CELL (MEC). (2017). Jurnal Teknologi (Sciences & Engineering), 79(5-3). https://doi.org/10.11113/jt.v79.11330