OXIDATIVE STRESS AND MORPHOLOGICAL ASSESSMENT OF BONE MARROW IN MONOSODIUM GLUTAMATE-TREATED RAT

Authors

  • Nor Janna Yahya Programme of Biomedical Science, School of Diagnostic and Applied Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Aziz, 50300 Kuala Lumpur, Malaysia
  • Zariyantey Abd Hamid Programme of Biomedical Science, School of Diagnostic and Applied Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Aziz, 50300 Kuala Lumpur, Malaysia
  • Erni Norfardila Abu Hanipah Programme of Biomedical Science, School of Diagnostic and Applied Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Aziz, 50300 Kuala Lumpur, Malaysia
  • Esther Mathias Ajik Programme of Biomedical Science, School of Diagnostic and Applied Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Aziz, 50300 Kuala Lumpur, Malaysia
  • Nur Afizah Yusoff Programme of Biomedical Science, School of Diagnostic and Applied Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Aziz, 50300 Kuala Lumpur, Malaysia
  • Izatus Shima Taib Programme of Biomedical Science, School of Diagnostic and Applied Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Aziz, 50300 Kuala Lumpur, Malaysia

DOI:

https://doi.org/10.11113/jt.v80.11414

Keywords:

Oxidative stress, antioxidant, bone marrow, monosodium glutamate, morphology

Abstract

Excess consumption of monosodium glutamate (MSG) was reported to cause oxidative stress on brain, liver and renal and altered haematological parameters. Therefore, this study was aimed to investigate the effect of MSG on oxidative stress status on bone marrow of rats. Male Sprague-Dawley rats (n=24) weighing between 160-200 g were divided randomly into three groups: Control which was given distilled water (1 mg/kg), MSG 60 and MSG 120 which were given 60 mg/kg MSG and 120 mg/kg MSG, respectively. All substances were oral force fed for 28 days consecutively. At the end of the study, bone marrow cells were isolated by flushing technique for measurement of the oxidative stress status and bone marrow smear observation. Results showed that the superoxide dismutase activity and protein carbonyl level were significantly increased in MSG 120 group than to control and MSG 60 groups (p<0.05). Conversely, glutathione level had declined significantly in both MSG groups as compared to control group (p<0.05). The malondialdehyde level was not significantly affected in MSG groups than to control group. Bone marrow smear indicated no evidence of morphological alteration in all groups. In conclusion, MSG at both doses caused oxidative stress on bone marrow after 28 days of exposure.

References

Maluly, H. D. B., M. A. Areas, P. Borelli, and F. G. R. Reyes. 2013. Evaluation of Biochemical, Hematological and Histological Parameters in Non-diabetic and Diabetic Wistar Rats Fed with Monosodium Glutamate. Food and Nutrition Sciences. 4: 66-76. DOI: 10.4236/fns.2013.41010.

Walker, R. and J. R. Lupien. 2000. The Safety Evaluation of Monosodium Glutamate. Journal of Nutrition. 130: 10495-10525.

Jinap, S. and P. Hajeb. 2010. Glutamate. Its Applications in Food and Contribution to Health. Appetite. 55: 1-10. DOI: 10.1016/j.appet.2010.05.002.

Ramanathan, M., S. Sivakumar, P. R. Anandvijayakumar, C. Saravanababu, and P. R. Pandian. 2007. Neuroprotective Evaluation of Standardized Extract of Centella asciatica in Monosodium Glutamate Treated Rats. Indian Journal of Experimental Biology. 45: 425-431.

Shivasharan, B. D., P. Nagakannan, B. S. Thippeswamy, and V. P. Veerapur. 2013. Protective Effect of Calendula officinalis L. Flowers against Monosodium Glutamate Induced Oxidative Stress and Excitotoxic Brain Damage in Rats. Indian Journal of Clinical Biochemistry. 28(3): 292-298. DOI: 10.1007/s12291-012-0256-1.

Nakanishi, Y., K. Tsuneyama, M. Fujimoto, T. L. Salunga, K. Nomoto, J.-L. An, Y. Takano, S. Iizuka, M. Nagata and W. Suzuki. 2008. Monosodium Glutamate (Msg): A Villain and Promoter of Liver Inflammation and Dysplasia. Journal of Autoimmunity. 30(1): 42-50. DOI: 10.1016/j.jaut.2007.11.016.

Egbuonu, A., O. Obidoa, C. Ezeokonkwo, L. Ezeanyika, and P. Ejikeme. 2009. Hepatotoxic Effects of Low Dose Oral Administration of Monosodium Glutamate in Male Albino Rats. African Journal Biotechnology. 8(303): 1-5. DOI: 10.1016/j.toxrep.2014.10.002.

Farombi, E. O. and O. O. Onyema. 2006. Monosodium Glutamate-induced Oxidative Damage and Genotoxicity in the Rat: Modulatory Rote of Vitamin C, Vitamin E and Quercetin. Human and Experimental Toxicology. 25: 251-259. DOI: 10.1191/0960327106ht621oa.

Tawfik, M. S. and N. Al-Badr. 2012. Adverse Effects of Monosodium Glutamate on Liver and Kidney Functions in Adult Rats and Potential Protective Effect of Vitamins C and E. Food and Nutrition Sciences. 3: 651-659. DOI: 10.4236/fns.2012.35089.

Hamza, R. Z. and M. S. AL-Harbi. 2014. Monosodium Glutamate Induced Testicular Toxicity and the Possible Ameliorative Role of Vitamin E or Selenium in Male Rats. Toxicology Reports. 1: 1037-1045. DOI: 10.1016/j.toxrep.2014.10.002.

Matés, J. M., J. A. Segura, F. J. Alonso, and J. Márquez. 2008. Intracellular Redox Status and Oxidative Stress: Implications for Cell Proliferation, Apoptosis, and Carcinogenesis. Archieves of Toxicology. 82: 273-299. DOI: https://doi.org/10.1007/s00204-008-0304-z.

Urao, N. and Ushio-Fukai, M. 2013. Redox Regulation of Stem/progenitor Cells and Bone Marrow Niche. Free Radical Biology and Medicine. 54: 26-39. DOI: 10.1016/j.freeradbiomed.2012.10.532.

Gurkan, U. A. and O. Akkus. 2008. The Mechanical Environment of Bone Marrow: A Review. Annals of Biomedical Engineering. 36(12): 1978-1991. DOI: 10.1007/s10439-008-9577-x.

Jung, H., M. J. Kim, D. O. Kim, W. S. Kim, S. J. Yoon, Y. J. Park, S. R. Yoon, T. D. Kim, H. W. Suh, S. Yun, J. K. Min, H. G. Lee, Y. H. Lee, H. J. Na, D. C. Lee, H. C. Kim, and I. Choi. 2013. TXNIP Maintains the Hematopoietic Cell Pool by Switching the Function of p53 under Oxidative Stress. Cell Metabolism. 18(1): 75-85. DOI: 10.1016/j.cmet.2013.06.002.

Ashaolu, J. O., V. O. Ukwenya, A. B. Okonoboh, O. K. Ghazal and A. A. G. Jimoh. 2011. Effect of Monosodium Glutamate on Hematological Parameters in Wistar Rats. International Journal of Medicine and Medical Sciences. 3(6): 219-222.

Sr. Prem D’Souzaa, K.K., Vijayalaxmi and N. Prashantha. 2014. Assessment of Genotoxicity of Aluminium Acetate in Bone Marrow, Male Germ Cells and Fetal Liver Cells of Swiss Albino Mice. Mutation Research. 766: 16-22. DOI: 10.1016/j.mrgentox.2014.02.006.

Luzhna, L., P. Kathiria, and O. Kovalchuk. 2013. Micronuclei in Genotoxicity Assessment: From Genetics to Epigenetics and Beyond. Frontiers in Genetics. 4(131): 1-17. DOI: 10.3389/fgene.2013.00131.

Fourteenth Report of the Joint FAO/WHO Expert Committee on Food Additives, FAO Nutrition Meetings Report Series No. 48, WHO Technical Report Series, No. 462: 1971:15

Beyer, W. F. and I. Fridovich. 1987. Assaying for Superoxide Dismutase Activity: Some Large Consequences of Minor Changes in Conditions. Analytical Biochemistry. 161(2): 559-566. DOI: 10.1016/0003-2697(87)90489-1.

Ellman, G. L. 1959. Tissue Sulfhydryl Groups. Archieves of Biochemistry and Biophyics. 82(1): 70-77. DOI: 10.1016/0003-9861(59)90090-6.

Stocks, J. and T. L. Dormandy. 1971. The Autoxidation of Human Red Cell Lipids Induced by Hydrogen Peroxide. British Journal of Haematology. 20(1): 95-111. DOI: 10.1111/j.1365-2141.1971.tb00790.x.

Levine, R. L., D. Garland, C. N. Oliver, A. Amici, I. Climent, A. G. Lenz, B. W. Ahn, S. Shaltiel, and E. R. Stadtman. 1990. Determination of Carbonyl Content in Oxidatively Modified Proteins. Methods of Enzymology. 186: 464-478. DOI: 10.1016/0076-6879(90)86141-h.

Inuwa, H. M., V. O Aina, G. Baba, A. I. Ola, and L. Ja'afaru. 2011. Determination of Nephrotoxicity and Hepatoxicity of Monosodium Glutamate (MSG) Consumption. British Journal of Pharmacology and Toxicology. 2(3): 148-153.

Mondal, M., P. Tarafder, K. Sarkar, P. P. Nath, and G. Paul. 2014. Monosodium Glutamate Induces Physiological Stress by Promoting Oxygen Deficiency, Cell Mediated Immunosuppression and Production of Cardiovascular Risk Metabolites in Rat. International Journal of Pharmaceutical Sciences Review and Research. 27(1): 32.

Ihsan, A., X. Wang, Z. Liu, Y. Wang, X. Huang, Y. Liu, H. Yu, H. Zhang, T. Li, C. Yang, and Z. Yuan. 2011. Long-term Mequindox Treatment Induced Endocrine and Reproductive Toxicity via Oxidative Stress in Male Wistar Rats. Toxicology and Applied Pharmacology. 252(3): 281-288. DOI: .10.1016/j.taap.2011.02.020.

Karihtala, P. and Y. Soini. 2007. Reactive Oxygen Species and Antioxidant Mechanisms in Human Tissues and Their Relation to Malignancies. Acta Pathologica, Microbiologica, et Immunologica Scandinavica. 115: 81-103. DOI: 10.1111/j.1600-0463.2007.apm_514.x.

Okwudiri, O. O., A. C. Sylvanus, and I. A. Peace. 2012. Monosodium Glutamate Induces Oxidative Stress and Affects Glucose Metabolism in the Kidney of Rats. International Journal of Biochemistry Research and Review. 2(1): 1-11.

Thomas, M., K. S. Sujatha, and S. George. 2009. Protective Effect of Piper longum Linn. on Monosodium Glutamate Induced Oxidative Stress in Rats. Indian Journal of Experimental Biology. 47(3): 186-192.

Dunning, S., A. Ur Rehman, M. H. Tiebosch, R. A. Hannivoort, F. W. Haijer, J. Woudenberg, F. A. J. Van Den Heuvel, M. Buist-Homan, K. N. Faber, and H. Moshage. 2013. Glutathione and Antioxidant Enzymes Serve Complementary Roles in Protecting Activated Hepatic Stellate Cells against Hydrogen Peroxide-induced Cell Death. Biochimica et Biophysica Acta. 1832(12): 2027-2034. DOI: 10.1016/j.bbadis.2013.07.008.

Lo, M., Y. Z. Wang, and P. W. Gout. 2008. The Xc- cystine/glutamate Antiporter: A Potential Target for Therapy of Cancer and Other Diseases. Journal of Cell Physiology. 215: 593-602. DOI: 10.1002/jcp.21366.

Conrad, M. and H. Sato. 2010. The Oxidative Stress-Inducible Cystine/glutamate Antiporter, System Xc-: cystine Supplier and Beyond. Amino Acids. 42: 231-246. DOI: 10.1007/s00726-011-0867-5.

Egbuonu, A. C. C., O. Obidoa, C. A. L. Ezeokonkwo, L. U. S. Ezeanyika, and P. M. Ejikeme. 2009. Hepatotoxic Effects of Low Dose Oral Administration of Monosodium Glutamate in Male Albino Rats. African Journal of Biotechnology. 8(13): 3031-3035.

Szydlowska, K. and M. Tymianski. 2010. Calcium, Ischemia and Excitotoxicity. Cell Calcium. 47(2): 122-129. DOI: 10.1016/j.ceca.2010.01.003.

Haleagrahara, N., T. Jackie, S. Chakravarthi, M. Rao, and A. Kulur. 2010. Protective Effect of Etlingera elatior (torch ginger) Extract on Lead Acetate-induced Hepatotoxicity in Rats. The Journal of Toxicological Sciences. 35(5): 663-671. DOI: 10.2131/jts.35.663.

Kim, H., E. Oh, H. Im, J. Mun, M. Yang, J. Y. Khim, E. Lee, S. H. Lim, M. H. Kong, M. Lee, and D. Sul. 2006. Oxidative Damages in the DNA, Lipids, and Proteins of Rats Exposed to Isofluranes and Alcohols. Toxicology. 220(2–3): 169-178. DOI: 10.1016/j.tox.2005.12.010.

Novotna, B., P. Jendelova, M. Kapcalova, P. Rossner Jr, K. Turnovcova, Y. Bagryantseva, M. Babic, D. Horak, and E. Sykova. 2012. Oxidative Damage to Biological Macromolecules in Human Bone Marrow Mesenchymal Stromal Cells Labeled with Various Types of Iron Oxide Nanoparticles. Toxicology Letters. 210(1): 53-63. DOI: 10.1016/j.toxlet.2012.01.008.

Deavall, D. G., E. A. Martin, J. M. Horner, and R. Roberts. 2012. Review Article Drug-induced Oxidative Stress and Toxicity. Journal of Toxicology. 2012: 1-13. DOI: 10.1155/2012/645460.

Xochelli, A., D. Kapoukranidou, M. Kritsepi-Konstantinou, V. Garipidou, and M. Albani. 2015. Glutamate Agonists may Affect the Hematological Profile in Healthy Rats. British Journal of Medicine and Medical Research. 8(5): 429-439. DOI:10.9734/bjmmr/2015/17683.

Downloads

Published

2018-01-09

Issue

Section

Science and Engineering

How to Cite

OXIDATIVE STRESS AND MORPHOLOGICAL ASSESSMENT OF BONE MARROW IN MONOSODIUM GLUTAMATE-TREATED RAT. (2018). Jurnal Teknologi (Sciences & Engineering), 80(2). https://doi.org/10.11113/jt.v80.11414