EFFECTS OF N-ACETYL-CYSTEINE SUPPLEMENTATION ON EX-VIVO CLONOGENICITY AND OXIDATIVE PROFILE OF LINEAGE-COMMITTED HEMATOPOIETIC STEM/PROGENITOR CELLS

Authors

  • Chan Chin Yi Program of Biomedical Science, School of Diagnostic and Applied Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Aziz, 50300 Kuala Lumpur, Malaysia
  • Zariyantey Abd Hamid Program of Biomedical Science, School of Diagnostic and Applied Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Aziz, 50300 Kuala Lumpur, Malaysia
  • Izatus Shima Taib Program of Biomedical Science, School of Diagnostic and Applied Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Aziz, 50300 Kuala Lumpur, Malaysia
  • Tan Hui Yee Program of Biomedical Science, School of Diagnostic and Applied Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Aziz, 50300 Kuala Lumpur, Malaysia
  • Muhd Khairul Akmal Wak Harto Program of Biomedical Science, School of Diagnostic and Applied Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Aziz, 50300 Kuala Lumpur, Malaysia
  • Chow Paik Wah Program of Biomedical Science, School of Diagnostic and Applied Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Aziz, 50300 Kuala Lumpur, Malaysia

DOI:

https://doi.org/10.11113/jt.v80.11419

Keywords:

Hematopoietic stem/progenitor cells, N-Acetyl-Cysteine, ex vivo, clonogenicity, oxidative profile

Abstract

Hematopoietic stem and progenitor cells (HSPCs) are exposed to oxidative damage acquired during ex vivo expansion which affects their therapeutic potency. Efforts to overcome this limitation includes the use of antioxidants. The effects of N-Acetyl-Cysteine (NAC) supplementation for 48 hours on maintenance of ex vivo HSPCs was investigated by examining the cell viability at concentrations of 0.125 µM, 0.25 µM, 0.5 µM, 1.0 µM and 2.0 µM, followed by clonogenicity and oxidative status assessments of lineage-committed progenitors (myeloid, erythroid and pre-B lymphoid) at selected NAC concentrations (0.25 µM, 0.5 µM, 2.0 µM). NAC supplementation significantly (p< 0.05) enhanced viability of HSPC at 0.25 µM, 0.5 µM, 2.0 µM.  The clonogenicity of each progenitor was not affected as no significant changes of Colony Forming Units (CFUs) counts was noted between NAC-supplemented group than control. NAC showed no significant effects on reactive oxygen species (ROS), glutathione (GSH) and superoxide dismutase (SOD) levels of respective progenitors as compared to control. Conclusively, NAC shows potential property as antioxidant supplement for ex vivo maintenance of HSPCs by promoting survivability and maintaining clonogenicity.

References

Bryder, D,. D. J. Rossi, and I. L. Weissman. 2006. Hematopoietic Stem Cells: The Paradigmatic Tissue-Specific Stem Cell. The American Journal of Pathology. 169(2): 338-346. DOI: 10.2353/ajpath.2006.060312.

Emerson, S. G. 1996. Ex Vivo Expansion of Hematopoietic Precursors, Progenitors, and Stem Cells: The Next Generation of Cellular Therapeutics. Blood. 87(8): 3082-3088.

Spradling, A., D. Drummond-Barbosa, and T. Kai. 2001. Stem Cells Find Their Niche. Nature. 414(November): 98-104. DOI: 10.1038/35102160.

Jang, Y. Y., and S. J. Sharkis. 2007. A Low Level of Reactive Oxygen Species Selects for Primitive Hematopoietic Stem Cells that May Reside in the Low-Oxygenic Niche. Blood. 110(8): 3056–3063. DOI: 10.1182/blood-2007-05-087759.

Ren, Z. H., and Y. P. Jiang. 2013. Umbilical Cord Blood Hematopoietic Stem Cell Expansion Ex Vivo. Journal Blood Disorders & Transfusion. S3: 1-6.

Takagi, M. 2005. Cell processing Engineering for Ex Vivo Expansion of Hematopoietic Cells. Journal of Bioscience and Bioengineering. 99(3): 189-196. DOI: 10.1263/jbb.99.189.

Watts, K. L., J. Adair, and H. P. Kiem. 2011. Hematopoietic Stem Cell Expansion and Gene Therapy. Cytotherapy. 13(10): 1164-1171. DOI: 10.3109/14653249.2011.620748.

Liu, A. M., W. W. Qu, X. Liu, and C. K. Qu. 2012. Chromosomal Instability in In Vitro Cultured Mouse Hematopoietic Cells Associated with Oxidative Stress. American Journal of Blood Research. 2(1): 71-76.

Abdul Hamid, Z., W. H. Lin Lin, B. J. Abdalla, , O. Bee Yuen, E. S. Latif, J. Mohamed, N. F. Rajab, C. Paik Wah, M. K. A. Wak Harto, and S. B. Budin. 2014. The Role of Hibiscus Sabdariffa L. (Roselle) in Maintenance of Ex Vivo Murine Bone Marrow-Derived Hematopoietic Stem Cells. The Scientific World Journal. 2014: 1-10. DOI: 10.1155/2014/258192.

Bigarella, C. L., R. Liang, and S. Ghaffari. 2014. Stem Cells and the Impact of ROS Signaling. Development (Cambridge, England). 141(22): 4206-18. DOI: 10.1242/dev.107086.

Owusu-Ansah, E., and U. Banerjee. 2009. Reactive Oxygen Species Prime Drosophila Haematopoietic Progenitors for Differentiation. Nature. 461(7263): 1-6. DOI: 10.1038/nature08313.

Sardina, J. L., G. López-Ruano, B. Sánchez-Sánchez, M. Lianillo, and A. Hernández-Hernández. 2012. Reactive Oxygen Species: Are They Important for Haematopoiesis. Critical Reviews in Oncology/Hematology. 81(3): 257-274.

Ludin, A., S. Gur-Cohen, K. Golan, K. B. Kaufmann, T. Itkin, C. Medaglia, X. Lu, G. Ledergor, O. Kollet, and T. Lapidot. 2014. Reactive Oxygen Species Regulate Hematopoietic Stem Cell Self-Renewal, Migration and Development, As Well As Their Bone Marrow Microenvironment. Antioxidants & Redox Signaling. 21(11): 1605-1619. doi: 10.1089/ars.2014.5941.

Tothova, Z., R. Kollipara, B. J. Huntly, B. H. Lee, D. H. Castrillon, D. E. Cullen, and E. P. McDowell. 2007. FoxOs Are Critical Mediators of Hematopoietic Stem Cell Resistance to Physiologic Oxidative Stress. Cell. 128(2): 325-339.

Ito, K., A. Hirao, F. Arai, K. Takubo, S. Matsuoka, K. Miyamoto, M. Ohmura, K. Naka, K. Hosokawa, Y. Ikeda, and T. Suda. 2006. Reactive Oxygen Species Act Through p38 MAPK to Limit the Lifespan of Hematopoietic Stem Cells. Nature Medicine. 12(4): 446-451. DOI: 10.1038/nm1388.

Aggarwal, R., J. Lu, V. J. Pompili, and H. Das. 2012. Hematopoietic Stem Cells: Transcriptional Regulation, Ex Vivo Expansion and Clinical Application. Current Molecular Medicine. 12(1): 34-49.

Alves, H., A. Mentink, B. Le, C. A. van Blitterswijk, and J. de Boer. 2013. Effect of Antioxidant Supplementation on the Total Yield, Oxidative Stress Levels, and Multipotency of Bone Marrow-Derived Human Mesenchymal Stromal Cells. Tissue Engineering Part A. 19(7-8): 928-937. DOI: 10.1089/ten.tea.2011.0700.

Hisha, H., H. Yamada, M. H. Sakurai, H. Kiyohara, Y. Li, C. Yu, N. Tokemoto, H. Kawamura, K. Yamaura, S. Shinohara, Y. Komatsu, M. Aburada, and S. Ikehara. 1997. Isolation and Identification of Hematopoietic Stem Cell-Stimulating Substances from Kampo (Japanese herbal) Medicine, Juzen-taiho-To. Blood. 90(3): 1022-1030.

Dean, O., F. Giorlando, and M. Berk. 2011. N-acetylcysteine in Psychiatry: Current Therapeutic Evidence and Potential Mechanisms of Action. Journal of Psychiatry and Neuroscience. 36(2): 78-86. DOI: 10.1503/jpn.100057.

Kelly, G. S. 1998. Clinical Applications of N-acetylcysteine. Alternative Medicine Review. 3(2): 114-127.

Parasassi, T., R. Brunelli, G. Costa, M. D. Spirito, E. K. Krasnowska, T. Lundeberg, E. Pittaluga, and F. Ursini. 2010. Thiol Redox Transitions in Cell Signaling: A Lesson from N-Acetylcysteine. The Scientific World Journal. 10: 1192-1202.

Berniakovich, I., L. Larrichia-Robbio, and J. C. I. Belmonte. 2012. N-acetylcysteine Protects Induced Pluripotent Stem Cells From In Vitro Stress: Impact on Differentiation Outcome. International Journal of Developmental Biology. 56: 729-735.

Fan, J., H. Cai, S. Yang, L. Yan, and W. S. Tan. 2008. Comparison between the Effects of Normoxia and Hypoxia on Antioxidant Enzymes and Glutathione Redox State in Ex Vivo Culture of CD34+ Cells. Comparative Biochemistry and Physiology, Part B. 151:153-158.

Human Colony-Forming Unit (CFU) Assays using MethocultTM. 2016. Stem Cell Technologies. 4.2.0: 1-52.

Mouse Colony-Forming Unit (CFU) Assays using MethocultTM. 2015. Stem Cell Technologies. 3.2.0: 1-40.

Ellman, G. L. 1959. Tissue Sulfhydryl Groups. Archives of Biochemistry and Biophysics. 82 (1): 70-77.

Beyer, W. F., and I. Fridovich. 1987. Assaying for Superoxide Dismutase Activity: Some Large Consequences of Minor Changes in Conditions. Analytical Biochemistry. 161: 559-566.

Gupta, R., S. Karpatkin, and R. S. Basch. 2006. Hematopoiesis and Stem Cell Renewal in Long-Term Bone Marrow Cultures Containing Catalase. Blood. 107(5): 1837–1846. DOI: 10.1182/blood-2005-03-1180.

Chaudhari, A. A., J. W. Seol, S. J. Kim, Y. J. Lee, H. S. Kang, I. S. Kim, N. S. Kim, and S. Y. Park. 2007. Reactive Oxygen Species Regulate Bax Translocation and Mitochondrial Transmembrane Potential, A Possible Mechanism for Enhanced TRAIL-Induced Apoptosis by CCCP. Oncology Reports. 18: 71-76.

Demirel, C., S. Kilçiksiz, O. I. Ay, S. Gürgül, M. E. Ay, and N. Erdal. 2009. Effect of N-acetylcysteine on Radiation-induced Genotoxicity and Cytotoxicity in Rat Bone Marrow. Journal of Radiation Research. 50(1): 43-50.

Maraldi, T., C. Angeloni, E. Giannoni, and C. Sell. 2015. Reactive Oxygen Species in Stem Cells. Oxidative Medicine and Cellular Longevity. 2015: 1-2. DOI: 10.1155/2015/159080.

Hunt, C. J. 2011. Cryopreservation of Human Stem Cells for Clinical Application: A Review. Transfusion Medicine and Hemotherapy. 38: 107-123.

National Standards for Stem Cell Transplantation: Collection, Processing, Storage and Infusion of Hematopoietic Stem Cells and Therapeutic Cells. Ministry of Health, Malaysia, July 2009. MOH/P/PAK/188.09(BP).

Downloads

Published

2018-02-26

Issue

Section

Science and Engineering

How to Cite

EFFECTS OF N-ACETYL-CYSTEINE SUPPLEMENTATION ON EX-VIVO CLONOGENICITY AND OXIDATIVE PROFILE OF LINEAGE-COMMITTED HEMATOPOIETIC STEM/PROGENITOR CELLS. (2018). Jurnal Teknologi (Sciences & Engineering), 80(3). https://doi.org/10.11113/jt.v80.11419