COMPARATIVE STUDY ON PYROLYSIS BEHAVIOR AND KINETICS OF TWO MACROALGAE BIOMASS (ULVA CF. FLEXUOSA AND HY. EDULIS) USING THERMOGRAVIMETRIC ANALYSIS

Authors

  • Amira Nabila Roslee School of Ocean Engineering, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
  • Nur Farizan Munajat School of Ocean Engineering, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

DOI:

https://doi.org/10.11113/jt.v80.11454

Keywords:

Macroalgae biomass, Thermal characterization, Model-free methods, Activation energy, Kinetic analysis

Abstract

Preliminary pyrolysis studies of macroalgae biomass (Ulva cf. flexuosa and Hy. edulis) which were collected from several coastlines of Peninsular Malaysia were performed by using thermogravimetric analysis (TGA). The corresponding kinetic parameters were calculated through three model-free methods, namely Kissinger, Kissinger-Akahira-Sunose (KAS), and Flynn-Wall-Ozawa (FWO). The TGA curves of both species exhibited three degradation stages: dehydration, devolatilization, and residual decomposition. The devolatilization stage is where the main pyrolysis occurred at a temperature around 150-590oC and released the total volatiles of 56.93% and 54.92% for Ulva cf. flexuosa and Hy. Edulis.  The calculation of activation energy from Kissinger method for Ulva cf. flexuosa was 180.24 kJ/mol while 194.86 kJ/mol for Hy. edulis. The apparent activation energies for KAS and FWO methods are increased by increasing the pyrolysis conversion with average activation energies of 241.17 kJ/mol and 253.65kJ/mol for Ulva cf. flexuosa, while for Hy. edulis, are 244.75 kJ/mol and 258.9 kJ/mol. This study provides the basis for the further application for designing and modeling in thermochemical conversion system of macro algae biomass.

References

Sanchez-Silva, L., López-González, D., Garcia-Minguillan, A. M., Valverde, J. L. 2013. Pyrolysis, combustion and Gasification Characteristics of Nannochloropsis Gaditana Microalgae. Bioresource Technology. 130: 321-31.

Filippis, P. D., Caprariis, B. D., Scarsella, M., Verdone, N. 2015. Double Distribution Activation Energy Model as Suitable Tool in Explaining Biomass and Coal Pyrolysis Behavior. Energies. 8: 1730-44.

Bridgwater, A. V. 2003. Renewable Fuels and Chemicals by Thermal Processing of Biomass. Chem Eng J. 91: 87-102.

Seaweed Nets of Taiwan. 2007. No. 2, Siangyang Rd., Taipei City 100, Taiwan (R.O.C)

Shuping, Z., Yulong, W., Mingde, Y., Chun, L., Junmao, T. 2010. Pyrolysis Characteristics and Kinetics of the Marine Microalgae Dunaliella Tertiolecta Using Thermogravimetric Analyzer. Bioresource Technology. 101: 359-65.

Khawam, A. 2007. Application of Solid State-kinetics to Desolvation Reactions. Iowa University Doctorial Thesis.

Guo, W., Xiao, H., Yasuda, E., Cheng, Y. 2006. Oxidation Kinetics and Mechanisms of a 2D-C/C Composite. Carbon. 44: 3269-76.

MateÄić MuÅ¡anić, S. Fiamengo Houra, I. Sućeska M. 2010. Applicability of Non-isothermal DSC and Ozawa Method for Studying Kinetics of Double Base Propellant Decomposition. Central European Journal of Energetic Materials. 7: 233-51.

FrÄ…czyk, A. 2011. The Activation Energy of Primary Crystallization of Fe95Si5 Metallic Glass. Technical Science. 14:93-100.

Naihao Ye, Demao Li , Limei Chen, Xiaowen Zhang, Xu, D. 2010. Comparative Studies of the Pyrolytic and Kinetic Characteristics of Maize Straw and the Seaweed Ulva pertusa. PLOs One. 5: 1-6.

Cole, A. J., Mata, L., Paul, N. A., Nys, R. D. 2014. Using CO2 to enhance Carbon Capture and Biomass Applications of Freshwater Macroalgae. Global Change Biology (GCB) Bioenergy. 6: 637-45.

Munir, S., Daood, S. S., Nimmo, W., Cunliffe, A. M., Gibbs, B. M. 2009. Thermal Analysis and Devolatilization Kinetics of Cotton Stalk, Sugar Cane Bagasse and Shea Meal Under Nitrogen and Air Atmospheres. Bioresources Technology. 100: 1413-8.

Lam, S. S., Liew, R. K., Lim, X. Y., Ani, F. N., Jusoh, A. 2016. Fruit Waste as Feedstock for Recovery by Pyrolysis Technique. International Biodeterioration & Biodegradation. 113: 325-33.

Lee, W-K, Lim, P. E., Phang S-M, Chai, L. 2016. Agar Properties of Gracilaria Species (Gracilariaceae, Rhodophyta) Collected from Different Natural Habitats in Malaysia. Regional Studies in Marine Science. 123-8.

Blanco, P. H., Wu, C., Onwudili, J. A., Williams, P. T. 2013. Characterization and Evaluation of Ni/SiO2 Catalysts For Hydrogen Production and Tar Reduction from Catalytic Steam Pyrolysis-Reforming of Refuse Derived Fuel. Applied Catalysis B: Environmental. 134-135: 238-50.

Li, D., Chen, L., Yi, X., Zhang, X., Ye, N. 2010. Pyrolytic Characteristics and Kinetics of Two Brown Algae and Sodium Alginate. Bioresource Technology. 101: 7131-6.

Ceylan, S., Goldfarb, J. L. 2015. Green Tide to Green Fuels: TG–FTIR Analysis and Kinetic Study of Ulva Prolifera Pyrolysis. Energy Conversion and Management. 101: 263-70.

Slopiecka, K., Bartocci, P., Fantozzi, F. 2011. Thermogravimetric Analysis and Kinetic Study of Poplar Wood Pyrolysis. Third International Conference on Applied Energy. 1687-98.

Shuangning, X., Zhihe, L., Baoming, L., Weiming, Y., Xueyuan, B. 2006. Devolatilization Characteristics of Biomass at Flash Heating Rate. Fuel. 85: 664-70.

Tumuluru, J. S., Hess, J. R., Boardman, R. D., Kenney, K. L. 2012. Formulation, Pretreatment, and Densification Options to Improve Biomass Specifications for Co-firing Highpercentages with Coal. Industrial Biotechnology. 8: 113-32.

Hui, Z., Huaxiao, Y., Mengmeng, Z., Song, Q. 2010. Pyrolysis Characteristics and Kinetics of Macroalgae Biomass Using Thermogravimetric Analyzer. International Scholarly and Scientific Research & Innovation. 4: 148-53.

Zhao, H., Song, Q., Huaxiao, Y., Congwang, Z. 2012. Pyrolysis Characteristics and Kinetics of Macroalgae Biomass Using Thermogravimetric Analyzer. International Journal of Environmental, Chemical, Ecological, Geological and Geophysical Engineering. 4: 433-40.

Ceylan, S., Topcu, Y., Ceylan, Z. 2014. Thermal Behaviour and Kinetics of Alga Polysiphonia Elongata Biomass During Pyrolysis. Bioresource Technology. 171: 193-8.

Kim, S-S., Ly, H. V., Kim, J., Choi, J. H., Woo, H. C. 2013. Thermogravimetric Characteristics and Pyrolysis Kinetics of Alga Sagarssum sp. biomass. Bioresource Technology. 139: 242-8.

Ceylan, S., Topcu, Y., Ceylan, Z. 2014. Thermal Behaviour and Kinetics of Alga Polysiphonia Elongata Biomass During Pyrolysis. Bioresour Technol. 171: 193-8.

Wang, J., Wang, G., Zhang, M., Chen, M., Li, D., Min, F., et al. 2006. A comparative Study of Thermolysis Characteristics and Kinetics of Seaweeds and Fir Wood. Process Biochemistry. 41: 1883-6.

S. L. B., P. P., C. L., L. D. 2010. The Halogenated Metabolism of Brown Algae (Phaeophyta), Its Biological Importance and Its Environmental Significance. Mar Drugs. 8: 988-1010.

López-Mondéjar, R., Zühlke, D., Becher D, Riedel K, Baldrian P. 2016. Cellulose and Hemicellulose Decomposition by Forest Soil Bacteria Proceeds by the Action of Structurally Variable Enzymatic Systems. Scientific Reports. 6: 25279.

Kassim, M. A., Kirtania, K., Cruz, D. D. L., Bhattacharya, S. P. 2014. Thermogravimetric Analysis and Kinetic Characterization of Lipid-extracted Tetraselmis suecica and Chlorella sp. Algal Research. 6: 39-45.

Slopiecka, K., Bartocci, P., Fantozzi, F. 2012. Thermogravimetric Analysis and Kinetic Study of Poplar Wood Pyrolysis. Applied Energy. 97: 491-7.

Agrawal, A., Chakraborty, S. 2013. A Kinetic Study of Pyrolysis and Combustion of Microalgae Chlorella vulgaris using Thermo-gravimetric Analysis. Bioresource Technology. 128: 72-80.

Downloads

Published

2018-01-09

Issue

Section

Science and Engineering

How to Cite

COMPARATIVE STUDY ON PYROLYSIS BEHAVIOR AND KINETICS OF TWO MACROALGAE BIOMASS (ULVA CF. FLEXUOSA AND HY. EDULIS) USING THERMOGRAVIMETRIC ANALYSIS. (2018). Jurnal Teknologi, 80(2). https://doi.org/10.11113/jt.v80.11454