• Faridah Yusof Department of Biotechnology Engineering, Kulliyyah of Engineering, International Islamic University Malaysia, P.O. Box 10, 50728 Kuala Lumpur, Malaysia
  • Silvia Chowdhury Department of Mechatronics Engineering, Kulliyyah of Engineering, International Islamic University Malaysia, P.O. Box 10, 50728 Kuala Lumpur, Malaysia
  • Nadzril Sulaiman Department of Mechatronics Engineering, Kulliyyah of Engineering, International Islamic University Malaysia, P.O. Box 10, 50728 Kuala Lumpur, Malaysia
  • Mohammad Omer Faruck Department of Biotechnology Engineering, Kulliyyah of Engineering, International Islamic University Malaysia, P.O. Box 10, 50728 Kuala Lumpur, Malaysia




One-Factor-at-a-time (OFAT), AgNO3, Silver nanoparticles (AgNPs), Transmission Electron Microscopy (TEM), Surface plasmon resonance (SPR).


Metallic silver (Ag) and some Ag compounds have long being used to fight microbial infection even before the emergence of antibiotics in the form of drugs. But lately, one of the problems facing the medical world is the occurrence of drug resistance microbes.  Therefore, actions must be taken to overcome the problem, one of which is to continue studies to develop new drugs, either synthetic or natural. The ultimate goal is to offer appropriate and efficient antimicrobial drugs to patients. In this regard, with the advent of nanotechnology, it is now possible to synthesize nano scale Ag which can be used in diverse medical applications. The aim of this study is to investigate the effect of some important parameters towards the production of high yield Ag nanoparticles (AgNPs) from silver salts by making use of reducing agent. One-Factor-at-a-Time (OFAT) design of experiment was conducted, involving five important synthesis parameters. Based on the analyses of its yellow color, absorption by UV-vis in the range of 350 to 420 nm wavelength and surface plasmon resonance (SPR) at 420 nm, AgNPs produced were estimated to be in the range of 5 to 50 nm in diameter.  Out of the five parameters tested, such as the concentration of silver nitrate (AgNO3), the initial pH of AgNO3 solution, the concentration of tri-sodium citrate (TSC), the reaction time between AgNO3 and TSC and stirring time (after reduction process), results showed that all factors except stirring time affect the production. Characterization of AgNPs, carried out using Transmission Electron Microscope (TEM), showed that the synthesized AgNPs were spherical with diameters less than 15 nm. Antimicrobial activity assays of AgNPs, carried out against selected microbes, namely Aspergillus niger, Microsporum canis and Staphylococcus aureus showed various degree of potencies.

Author Biography

  • Faridah Yusof, Department of Biotechnology Engineering, Kulliyyah of Engineering, International Islamic University Malaysia, P.O. Box 10, 50728 Kuala Lumpur, Malaysia
    Professor and Dr


Kharissova, O. V., RasikaDias, H. V., Kharisov, B. I., Pérez, B. O. & Jiménez-Pérez, V. M. 2013. The Greener Synthesis of Nanoparticles. Trends Biotechnol. 31(4): 1-9. DOI:10.1016/j.tibtech.2013.01.003.

Varma, R. S. 2012. Greener Approach to Nanomaterials and Sustainable Applications. Curr Opin Chem Eng. 1: 123-128. DOI:10.1016/j.coche.2011.12.002

Das, M. R., Sarma, R. K., Saikia, R., Kale. V. S., Shelke, M. V. & Sengupta, P. 2011. Synthesis of Silver Nanoparticles in an Aqueous Suspension of Graphene Oxide Sheets and its Antimicrobial Activity. Colloid Surf B-Biointerfaces. 83: 16-22. DOI:10.1016/j.colsurfb.2010.10.033.

Shankar, R., Groven, L., Amert, A., Whites, K. W. & Kellar, J. J. 2011. Non-aqueous Synthesis of Silver Nanoparticles Using Tin Acetate as a Reducing Agent for the Conductive Ink Formulation in Printed Electronics. J Mater Chem. 21: 10871-10877. DOI:10.1039/C0JM04521G.

Patakfalvi, R., Oszkó, A. &Dékány, I. 2003. Synthesis and Characterization of Silver Nanoparticle/Kaolinite Composites. Colloid Surface A. 220: 45-54. DOI:10.1016/S0927-7757(03)00056-6.

Shameli, K., Ahmad, M. B., Wan Yunus, W. M. Z., Ibrahim, N. A, & Jokar, M. 2010. Synthesis and Characterization of Silver/Polylactide Nanocomposites. Proc World Acad Sci Eng Technol. 64: 28-32. DOI:scholar.waset.org/1999.2/11959.

Eustis, S. & El-Sayed, M. A. 2006. Why Gold Nanoparticles are More Precious than Pretty Gold: Noble Metal Surface Plasmon Resonance and its Enhancement of the Radiative and Nonradiative Properties of Nanocrystals of Different Shape. Chem Soc Rev. 35: 209-217. DOI:10.1039/B514191E.

Donescu, D., Nistor, C. L., Purcar, C., Petcu, C., Serban, S., Corobea, M. C. & Ghiurea, M. 2009. Formation and Dissolution of Silver Nanoparticles. J Optoelectron Adv Mater. 1: 44-48.

Tada, H., Teranishi, K. & Ito, S. 1999. Additive Effect of Sacrificial Electron Donors on Ag/TiO2Photocatalytic Reduction of Bis(2-dipyridyl)-disulfide to 2-Mercaptopyridine in Aqueous Media. Langmuir. 15: 7084-7087. DOI:10.1021/la981728k.

Chimentao, R. J., Kirm, I., Medina, F., Rodriguez, X., Cesteros, Y., Salagre, P., Sueiras, J. E. & Fierro, J. L. G. 2005. Sensitivity of Styrene Oxidation Reaction to the Catalyst Structure of Silver Nanoparticles. Appl Surf Sci. 252: 793-800. DOI:10.1016/j.apsusc.2005.02.064.

Sondi, I. & Salopek-Sondi, B. 2004. Silver Nanoparticles as Antimicrobial Agent: A Case Study on E. coli as a Model for Gram-negative Bacteria. J Colloid Interface Sci. 275: 177-182. DOI:10.1016/j.jcis.2004.02.012.

Zhang, Y., Zhang, K. & Ma, H. 2009. Electrochemical DNA Biosensor Based on Silver Nanoparticles/Poly(3-(3-Pyridyl) Acrylic Acid)/Carbon Nanotubes Modified Electrode. Anal Biochem. 387: 13-19. DOI:10.1016/j.ab.2008.10.043.

Zheng, J., Ding, Y., Tian, B., Wang, Z.L. & Zhuang, X. 2008. Luminescent and Raman Active Silver Nanoparticles with Polycrystalline Structure. J Am Chem Soc. 130: 10472-10473. DOI:10.1021/ja803302p.

Kim, J. S., Kuk, E., Yu, K. N., Kim, J. H., Park, S. J., Lee, H. J., Kim, S. H., Park, Y. K., Park, Y. H.& Hwang, C. H, 2007. Antimicrobial Effects of Silver Nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine. 3: 95-101. DOI:10.1016/j.nano.2006.12.001.

Chowdhury, S., Yusof, F., Faruck, M. O, &Sulaiman, N. 2016. Process Optimization of Silver Nanoparticle Synthesis Using Response Surface Methodology. Procedia Engineering. 148: 992-999. DOI: 10.1016/j.proeng.2016.06.552.

Balavandy, S. K., Shameli, K., Biak, D. R. B. A. &Abidin, Z. Z., 2014. Stirring Time Effect of Silver Nanoparticles Prepared in Glutathione Mediated by Green Method. Chemistry Central Journal. 8: 11. https://doi.org 10.1186/1752-153X-8-11.

Gurunathan, S., Kalishwaralal, K., Vaidyanathan, R., Venkataraman, D., Pandian, S. R. K., Muniyandi, J., Hariharan, N. & Eom, S. H. 2009. Biosynthesis, Purification and Characterization of Silver Nanoparticles using Escherichia coli. Colloids and Surfaces B: Biointerfaces. 74: 328-335. DOI:10.1016/j.colsurfb.2009.07.048.

Kim, K. J., Sung, W. S., Suh, B. K., Moon, S. K., Choi, J. S., Kim, J. G. &Lee, D. G. 2009. Antifungal Activity and Mode of Action of Silver Nano-Particles on Candida Albicans. Biometals. 22: 235-242. DOI:10.1007/s10534-008-9159-2.

Kora, A. J. & R. Sashidhar, R. 2014. Biogenic Silver Nanoparticles Synthesized with Rhamnogalacturonan Gum: Antibacterial Activity, Cytotoxicity and its Mode of Action. Arabian Journal of Chemistry. DOI:10.1016/j.arabjc.2014.10.036.

PanáÄek, A., Kolář, M., VeÄeÅ™ová, R., Prucek, R., Soukupová, J., KryÅ¡tof,V., Hamal, P., ZboÅ™il, R. & L. Kvítek, L. 2009. Antifungal activity of Silver Nanoparticles Against Candida spp. Biomaterials. 30: 6333-6340. DOI:10.1016/j.biomaterials.2009.07.065.

Atiyeh, B. S., Costagliola, M., Hayek, S. N. &Dibo, S. A. 2007. Effect of Silver on Burn Wound Infection Control and Healing: Review of the Literature. Burns. 33: 139-148. DOI:10.1016/j.burns.2006.06.010.

Krishnaraj, C., Ramachandran, R., Mohan, K. & Kalaichelvan, P. 2012. Optimization for Rapid Synthesis of Silver Nanoparticles and its Effect on Phytopathogenic Fungi. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 93: 95-99. DOI:10.1016/j.saa.2012.03.002

Kushwaha, H. B. & Malik, C. P. 2012. Nanofabrication of Silver Nanoparticles from the Stem and Leaf Extract of Verbesina encelioides. National Academy Science Letters. 35: 555-563. https://doi.org/10.1007/s40009-012-0097-8.

Reyes-Chilpa, R., Gomez-Garibay, F., Moreno-Torres, G., Jimenez-Estrada, M. &Quiroz-Vasquez, R. 1998. Flavonoids and Soflavonoids with Antifungal Properties from Platymiscium Yucatanum Heartwood. Holzforschung-International Journal of the Biology, Chemistry. Physics and Technology of Wood. 52: 459-462. DOI:10.1515/hfsg.1998.52.5.459.

Van Dong, P., Ha, C. H. &Kasbohm, J. 2012. Chemical Synthesis and Antibacterial Activity of Novel-Shaped Silver Nanoparticles. International Nano Letters. 2: 1-9. https://doi.org/10.1186/2228-5326-2-9.

Peng, S., McMahon, J. M., Schatz, G. C., Gray, S. K. & Sun, Y. 2010. Reversing the Size-Dependence of Surface Plasmon Resonances. Proceedings of the National Academy of Sciences. 107: 14530-14534. DOI: 10.1073/pnas.1007524107.

Chowdhury, S., Yusof, F., Sulaiman, N. & Faruck, M. O. 2016. The Aggregation Study and Characterization of Silver Nanoparticles. Proceedings of International Conference on Functional Materials and Metallurgy (ICFMM 2016), Key Material Engineering, Shanghai, China, October 21-23 2016.

Faruck, M. O., Yusof, F. & Chowdhury, S. 2016. An Overview of Antifungal Peptides Derived from Insect. Peptides. 80: 80-88. DOI:10.1016/j.peptides.2015.06.001.

Panáček, A., Kvitek, L., Prucek, R., Kolar, M., Vecerova, R., Pizurova, N., Sharma, V. K., Nevečná, T. J. & Zboril, R. 2006. Silver Colloid Nanoparticles: Synthesis, Characterization, and Their Antibacterial Activity. The Journal of Physical Chemistry B. 110: 16248-16253. DOI:10.1021/jp063826h.






Science and Engineering

How to Cite