FABRICATION OF POLY(LACTIC-CO-GLYCOLIC ACID)/CALCIUM PHOSPHATE BONE CEMENT COMPOSITE: SYNTHESIZATION OF CALCIUM PHOSPHATE FROM CRAB SHELLS

Authors

  • Mohammad Redzuan Abdul Hanan Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Ahmad Kafrawi Nasution Dept. of Mechanical Engineering, Faculty of Engineering, Muhammadiyah University of Riau, Pekanbaru, Indonesia
  • Rafaqat Hussain Department of Physics, COMSATS Institute of Information Technology, Islamabad, Pakistan
  • Syafiqah Saidin Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia http://orcid.org/0000-0002-5114-3453

DOI:

https://doi.org/10.11113/jt.v80.11525

Keywords:

Bone cement, calcium phosphate, poly(lactic-co-glycolic acid), crab shells, bioactive

Abstract

Crab shells are waste product, rich with calcium compound. Calcium element is often used as a material for bone scaffold due to its bioactive and biodegradation properties. In this study, calcium phosphate (CaP) nanoparticles were synthesized from crab shells through a wet chemical route. The CaP nanoparticles were then sintered and mixed with poly(lactic-co-glycolic acid) (PLGA) to form a bone cement composite. The mixture was casted in a cylinder shape and it was characterized through ATR-FTIR, XRD, FESEM, contact angle and DSC analyses. The CaP pellet and the CaP/PLGA bone cement composite were then subjected to in vitro simulated body fluid (SBF) bioactivity test. The CaP/PLGA bone cement composite was found to have a composition of crystal CaP and PLGA with a tolerable glass transition state, suitable to be used in a physiological environment. The CaP nanoparticles were agglomerated on the 3D interconnected surface of PLGA. The hydrophobicity of the CaP was increased (66.94%) with the addition of PLGA as a binder matrix where this composite has induced the formation of apatite layer. This bioactive property is crucial in fabricating a bone substitute material as it can promotes cell penetration, attachment and proliferation.

.

References

Asphama, A. I., Amir, F., Malina, A. C., and Fujaya, Y. 2015. Habitat Preferences of Blue Swimming Crab (Portunus Pelagicus) Species Complex. Aquacultura Indonesiana. 16: 10-15.

Ikhwanuddin, M., Liyana, A. N., Azra, M. N., Bachok, Z., and Abol-Munafi, A. B. 2014. Natural Diet of Blue Swimming Crab, portunus pelagicus at Strait of Tebrau, Johor, Malaysia. Sains Malaysiana. 43: 37-44.

Talpur, A. D., Memon, A. J., Khan, M. I., Ikhwanuddin, M., Danish Daniel, M. M., and Abol-Munafi, A. B. 2011. A Novel of Gut Pathogenic Bacteria of Blue Swimming Crab Portunus pelagicus (Linneaus, 1758) and Pathogenicity of Vibrio harveyi a Transmission Agent In Larval Culture Under Hatchery Conditions. Res J Appl Sci. 6: 116-127.

Xu, Y., Gallert, C., and Winter, J. 2008. Chitin Purification from Shrimp Wastes by Microbial Deproteination and Decalcification. Appl Microbiol Biotechnol. 79: 687-697.

Habraken, W., Habibovic, P., Epple, M., and Bohner, M. 2016. Calcium Phosphates in Biomedical Applications: Materials for the Future? Mater Today. 19: 69-87.

Boutinguiza, M., Pou, J., Comesaña, R., Lusquiños, F., de Carlos A., and León, B. 2012. Biological Hydroxyapatite Obtained from Fish Bones. Mater Sci Eng C. 32: 478-486.

Ge, H., Zhao, B., Lai, Y., Hu, X., Zhang, D., and Hu, K. 2010. From Crabshell to Chitosan-Hydroxyapatite Composite Material via a Biomorphic Mineralization Synthesis Method. J Mater Sci Mater Med. 21: 1781-1787.

Metz, J. R., de Vrieze, E., Lock E-J, Schulten, I. E., and Flik G. 2012. Elasmoid Scales of Fishes as Model in Biomedical Bone Research. J Appl Ichthyol. 28: 382-387.

Amer Nordin, J., Prajitno, D. H., Saidin, S., Nur, H., and Hermawan, H. 2015. Structure-property Relationships of Iron–Hydroxyapatite Ceramic Matrix Nanocomposite Fabricated Using Mechanosynthesis Method. Mater Sci Eng C. 51: 294-299.

LeGeros, R. Z. 2002. Properties of Osteoconductive Biomaterials: Calcium Phosphates. Clin Orthop Relat Res. 395: 81-98.

Surmenev, R. A., Surmeneva, M. A., and Ivanova, A. A. 2014. Significance of Calcium Phosphate Coatings for the Enhancement of New Bone Osteogenesis - A Review. Acta Biomater. 10: 557-579.

Akram, M., Ahmed, R., Shakir, I., Wan Ibrahim, W. I., and Hussain, R. 2014. Extracting Hydroxyapatite and Its Precursors from Natural Resources. J Mater Sci. 49: 1461-1475.

Tadic, D., and Epple, M. 2004. A Thorough Physicochemical Characterisation of 14 Calcium Phosphate-based Bone Substitution Materials In Comparison to Natural Bone. Biomater. 25: 987-994.

Andrianjatovo, H., and Lemaitre, J. M. 1995. Effects of Polysaccharides on the Cement Properties in the Monocalcium Phosphate/Β-Tricalcium Phosphate System. Innovation et technologie en biologie et médecine. 16: 140-147.

Apelt, D., Theiss, F., El-Warrak, A. O., Zlinszky, K., Bettschart-Wolfisberger, R., Bohner, M., Matter, S., Auer, J. A., and Von Rechenberg, B. 2004. In Vivo Behavior of Three Different Injectable Hydraulic Calcium Phosphate Cements. Biomater. 25: 1439-1451.

Bohner, M. 2010. Design of Ceramic-based Cements and Putties for Bone Graft Substitution. Eur Cell Mater. 20: 1-12.

Takagi, S., Chow, L. C., Hirayama, S., and Sugawara, A. 2003. Premixed Calcium–phosphate Cement Pastes. J Biomed Mater Res B Appl Biomater. 67B: 689-696.

Aberg, J., Brisby, H., Henriksson, H. B., Lindahl, A., Thomsen, P., and Engqvist, H. 2010. Premixed acidic calcium phosphate cement: Characterization of strength and microstructure. J Biomed Mater Res B Appl Biomater. 93B: 436-441.

Heinemann, S., Rössler, S., Lemm, M., Ruhnow, M., and Nies, B. 2013. Properties of Injectable Ready-to-Use Calcium Phosphate Cement Based on Water-Immiscible liquid. Acta Biomater. 9: 6199-6207.

Wagoner Johnson, A. J., and Herschler, B. A. 2011. A Review of the Mechanical Behavior of CaP and CaP/polymer Composites for Applications in Bone Replacement and Repair. Acta Biomater. 7: 16-30.

Unabia, R., Piagola, J. C., Guerrero, J. R., Vequizo, R., Gambe, J., Odarve, M. K., and Sambo, B. R. 2015. Synthesis and Characterization of Nanocrystalline Hydroxyapatite and Biphasic Calcum Phosphate using Ca(OH)2 and (NH4)H2PO4. Phys Status Solidi C. 12: 572-575.

Kokubo, T., and Takadama, H. 2006. How Useful is SBF in Predicting in Vivo Bone Bioactivity? Biomater. 27: 2907-2915.

Havelin, L. I., Engesaeter, L. B., Espehaug, B., Furnes, O., Lie, S. A., and Vollset, S. E. 2000. The Norwegian Arthroplasty Register: 11 years and 73,000 Arthroplasties. Acta Orthop Scand. 71: 337-353.

Moroni, A., Faldini, C., Rocca, M., Stea, S., and Giannini, S. 2002. Improvement of the Bone–screw Interface Strength with Hydroxyapatite-Coated and Titanium-Coated AO/ASIF Cortical Screws. J Orthop Trauma. 16: 257–263.

Russell, T. A., and Leighton, R. K. 2008. Alpha-BSM Tibial Plateau Fracture Study Group, Comparison of Autogenous Bone Graft and Endothermic Calcium Phosphate Cement for Defect Augmentation in Tibial Plateau Fractures, A Multicenter, Prospective, Randomized Study. J Bone Joint Surg. 90: 2057-2061.

Reig, F. B., Gimeno Adelantado, J. V., and Moya Moreno, M. C. M. 2002. FTIR Quantitative Analysis of Calcium Carbonate (Calcite) and Silica (Quartz) Mixtures Using the Constant Ratio Method. Application to Geological Samples. Talanta. 58: 811-821.

Ducheyne, P., Healy, K., Hutmacher, D. E., Grainger, D. W., and James Kirkpatrick, C. 2011. Comprehensive Biomaterials. 1st ed. Amsterdam: Elsevier. 1: 1-705.

Marques, D. R., dos Santos, L. A., Schopf, L. F., and de Fraga, J. C. S. 2013. Analysis of Poly (lactic-co-glycolic acid)/poly (isoprene) Polymeric Blend for Application as Biomaterial. Polímeros. 23: 579-584.

Nath, S. D., Son, S., Sadiasa, A., Min, Y. K., and Lee, B. T. 2013. Preparation and Characterization of PLGA Microspheres by the Electrospraying Method for Delivering Simvastatin for Bone Regeneration. Int J Pharm. 443: 87-94.

Félix Lanao Rosa P., Kemal S., Huanan W., Wolke Joop G. C., Jansen John A., and Leeuwenburgh Sander C. G. 2013. Accelerated Calcium Phosphate Cement Degradation Due to Incorporation of Glucono-Delta-Lactone Microparticles. Tissue Eng A. 20: 378–388.

Chang, H. I., and Wang, Y. 2011. Cell Responses to Surface and Architecture of Tissue Engineering Scaffolds. In: Eberli D, Editor. Regenerative Medicine and Tissue Engineering-Cells and Biomaterials, Croatia: InTech. 27: 569-588

D’Souza, S., Dorati, R., and DeLuca, P. P. 2014. Effect of Hydration on Physicochemical Properties of End-capped PLGA. Adv Biomater. 1-9.

Downloads

Published

2018-04-29

Issue

Section

Science and Engineering

How to Cite

FABRICATION OF POLY(LACTIC-CO-GLYCOLIC ACID)/CALCIUM PHOSPHATE BONE CEMENT COMPOSITE: SYNTHESIZATION OF CALCIUM PHOSPHATE FROM CRAB SHELLS. (2018). Jurnal Teknologi, 80(4). https://doi.org/10.11113/jt.v80.11525