EFFECT OF REACTION CONDITIONS ON THE SYNTHESIS OF CYCLODEXTRIN (CD) BY USING IMMOBILIZED ENZYME
DOI:
https://doi.org/10.11113/jt.v80.11707Keywords:
Cyclodextrin, cyclodextrin glucanotransferase, enzyme immobilization, hollow fiber membraneAbstract
The production of cyclodextrin (CD) over the years has been increasing due to the numerous applications in industries such as in food, cosmetic, pharmaceutical and agricultural industries. However, cyclodextrin glucanotransferase (CGTase) which involved in the enzymatic reaction on the production of CD is unstable and easily denatured at extreme conditions resulted in low CD production. Hence, the enzyme immobilization technique is introduced to overcome these problems and subsequently increase the production of CD. In the present study, the CGTase was immobilized on hollow fiber membrane to increase the production of CD during the reaction. The effect of reaction conditions (types of starch, concentration of starch, temperature and pH) of the immobilized enzyme on the production of CD were investigated. Among the three types of starch tested, the soluble potato starch was the most suitable substrate for the production of CD with 4.13 mg/mL. In addition, by using 3% (w/v) of the soluble potato starch, the production of CD was 5.22 mg/mL . The optimal reaction temperature and pH were found to be at 40°C and pH 6 with 5.21 mg/mL and 4.62 mg/ml of CD, respectively. The immobilized enzyme exhibited a 1.3-3-fold increase in CD production compared to the free enzyme. Therefore, the hollow fiber membrane is suitable to be used as a support for enzyme immobilization with the high production of CD.
References
Valle, E. M. M. Del. 2004. Cyclodextrins and their uses: A review. Process Biochemistry. 39(9): 1033-1046. DOI: 10.1016/S0032-9592(03)00258-9.
DOI: https://doi.org/10.1016/S0032-9592(03)00258-9.
Zhekova, B. Y. and Stanchev, V. S. 2001. Reaction Conditions for Maximal Cyclodextrin Production by Cyclodextrin Glucanotransferase from Bacillus megaterium. Polish J. Microbiol. 60(2): 113-118.
Hou J., Dong G., Ye, Y. and Chen, V. 2014. Enzymatic Degradation of Bisphenol-A with Immobilized Laccase on TiO2 Sol-gel Coated PVDF Membrane. J. Memb. Sci. 9-30.
DOI: https://doi.org/10.1016/j.memsci.2014.06.027.
Man, R. C., Ismail, A. F., Ghazali, N. F., Fuzi, S. F. Z. M., and Illias, R. M. 2015, April. Effects of the Immobilization of Recombinant Escherichia Coli on Cyclodextrin Glucanotransferase (CGTase) Excretion and Cell Viability. Biochem. Eng. J. 91-98.
DOI: http://doi.org/10.1016/j.bej.2015.02.013.
Algieri, C., Donato, L. and Giorno, L. 2016. Tyrosinase immobilized on a Hydrophobic Membrane. Biotechnol. Appl. Biochem. 1-8.
DOI: http:// 10.1002/bab.1462.
Kuo, C. H., Chen, G. J., Twu, Y. K., Liu, Y. C. and Shieh, C. J. 2012. Optimum Lipase Immobilized on Diamine-grafted PVDF Membrane and its Characterization. Ind. Eng. Chem. Res. 51(14): 5141-5147.
DOI: https://doi.org/10.1021/ie300011q.
Sakinah, A. M. M., Ismail, A. F., Illias, R. M., Zularisam, A. W., Hassan, O. and Matsuura, T. 2014. Effect of Substrate and Enzyme Concentration on Cyclodextrin Production in a Hollow Fibre Membrane Reactor System. Sep. Purif. Technol. 61-67.
DOI: https://doi.org/10.1016/j.seppur.2014.01.005.
Man, R. C., Ismail, A. F., Fuzi, S. F. Z. M., Ghazali, N. F. and Illias, R. M. 2016. Effects of Culture Conditions of Immobilized Recombinant Escherichia Coli on Cyclodextrin Glucanotransferase (CGTase) Excretion and Cell Stability. Process Biochem. 51(4): 474-483.
DOI: http://doi.org/10.1016/j.procbio.2016.01.002.
Chowdhury, S., Chakraborty, S. and Saha, 2001 Biosorption of Basic Green 4 from Aqueous Solution by Ananas Comosus (Pineapple) Leaf Powder. Colloids Surfaces B Biointerfaces. 84(2): 520-527.
DOI: https://doi.org/10.1016/j.colsurfb.2011.02.009.
Fontananova, E., Bahattab, M. A., Aljlil, S. A., Alowairdy, M., Rinaldi, G., Vuono, D., Nagy, J. B., .Drioli, E. and Profio G. D. 2015. From Hydrophobic to Hydrophilic Polyvinylidenefluoride (PVDF) Membranes by Gaining New Insight into Material’s Properties. RSC Adv. 5(69): 56219-5623.
DOI: https://doi.org/10.1039/C5RA08388E.
Lei, C., Soares, T. A., Shin, Y., Liu, J. and Ackerman, E. J. 2008. Enzyme Specific Activity in Functionalized Nanoporous Supports. Nanotechnology. 19(12): 125102.
DOI: https://doi.org/10.3109/10242429809003625.
Brunet, C., Lamare, S., and Legoy M. D. 1998. Studies of Specific Cyclodextrin Production Starting from Pure Maltooligosaccharides using Thermoanaerobacter sp. Cyclodextrin GlycosylTransferase. Biocatal. Biotransformation. 16(4): 317-327.
DOI: https://doi.org/10.3109/10242429809003625
Pishtiyski, I. and Zhekova, B. 2006. Effect of Different Substrates and Their Preliminary Treatment on Cyclodextrin Production. World J. Microbiol. Biotechnol. 22(2): 109-114.
DOI: https://doi.org/10.1007/s11274-005-9004-5.
Gawande, B. and Patkar, A. 2001. Alpha-Cyclodextrin Production using Cyclodextrin Glycosyltransferase from Klebsiella Pneumoniae. Starch-Starke. 75-83.
DOI:https://doi.org/10.1002/1521379X(200102)53:2<75::AID-STAR75>3.3.CO;2-A.
Biwer, A., Antranikian, G. and Heinzle, E. 2002. Enzymatic Production of Cyclodextrins. Appl. Microbiol. Biotechnol. 609-617.
DOI: http://doi.org/10.1007/s00253-002-1057-x.
Sakinah, A. M. M., Ismail, A. F., Hassan, O., & Zularisam, A. W. 2009. Influence of Starch Pretreatment on Yield of Cyclodextrins and Performance of Ultrafiltration Membranes. Desalination. 239(1-3): 317-333.
Maltos, A. F., Durán, L. V. R., Renovato, J., Contreras, J. C., RodrÃguez, R. and Aguilar, C. N. 2011. Catalytical Properties of Free and Immobilized Aspergillus niger Tannase. Enzyme Res. 768183.
DOI: http://doi.org/10.4061/2011/768183
Aslan Y. and Tanriseven, A. 2007. Immobilization of Pectinex Ultra SP-L to Produce Galactooligosaccharide. J. Mol. Catal. B Enzym. 73-77.
DOI: http://doi.org/10.1016/j.molcatb.2006.12.005.
Souza, M. D., Faria, S. H. B. D., Zanin, G. M. and Moraes, F. F. 2013. Kinetics of the Simultaneous Production of B- And G-Cyclodextrins Catalyzed by CGTase from Alkalophilic Bacillus sp. Acta Sci. Technol. 35(4): 687-693.
DOI:https://doi.org/10.4025/actascitechnol.v35i4.13944
chöffer, J. D. N. S., Klein, M. P., Rodrigues, R. C. and Hertz, P. F. 2013. Continuous Production of β-cyclodextrin from Starch by Highly Stable Cyclodextrin Glycosyltransferase Immobilized on Chitosan. Carbohydr. Polym. 98(2): 1311-1316. Schöffer, J. D. N., Klein, M. P., Rodrigues, R. C., & Hertz, P. F. 2013. Continuous Production of β-cyclodextrin from Starch by Highly Stable Cyclodextrin Glycosyltransferase Immobilized on Chitosan. Carbohydrate Polymers. 98(2): 1311-1316.
DOI : https://doi.org/10.1016/j.carbpol.2013.07.044.
Rodrigues, R. C., Ortiz, C., Murcia, Ã. B., Torres, R. and Lafuente, R. F. 2013. Modifying Enzyme Activity and Selectivity by Immobilization. Chem. Soc. Rev. 42(15): 6290-6307. DOI: https://doi.org/10.1039/C2CS35231A.
Kim, T. J., Kim, B. C. and Lee, H. S. 1995. Production of Cyclodextrins Using Moderately Heat-Treated Cornstarch. Enzyme Microb. Technol. 17(12): 1057-1061.
DOI: https://doi.org/10.1016/0141-0229(95)00036-4.
Kitcha, S., Cheirsilp, B. and Maneerat, S. 2008 Cyclodextrin Glycosyltransferase from a Newly Isolated Alkalophilic Bacillus sp. C26. Songklanakarin J. Sci. Technol. 30(6): 723-728.
Ibrahim, A. S. S., Salamah, A. A. A., Toni, A. M. E., Taye, M. A. E. and Elbadawij, Y. B. 2014. Cyclodextrin Glucanotransferase Immobilization onto Functionalized Magnetic Double Mesoporous Core-Shell Silica Nanospheres. Electron. J. Biotechnol. 17(2): 55-64.
DOI: https://doi.org/10.1016/j.ejbt.2014.01.001.
Charoenlap, N., Dharmsthiti, S. and Sirisansaneeyakul, S. 2004. Optimization of Cyclodextrin Production from Sago Starch. Bioresour. Technol. 49-54.
DOI: https://doi.org/10.1016/j.biortech.2003.07.007
Manas, N. H. A., Illias, R. M. and Mahadi, N. M. 2017. Strategy in Manipulating Transglycosylation Activity of Glycosyl Hydrolase for Oligosaccharide Production. Crit. Rev. Biotechnol. 1-22.
DOI: https://doi.org/10.1080/07388551.2017.1339664.
Maarel, M. J. E. C. V. D., Veen, B. V. D., Uitdehaag, J. C. M., Leemhuis, H. and Dijkhuizen, L. 2002. Properties and Applications of Starch-Converting Enzymes of the Alpha-Amylase Family. J. Biotechnol. 137-155.
DOI: http://doi.org//10.1016/S0168-1656(01)00407-2.
Gebler, J. C., Trimbur, D. E., Warren, R. A. J., Aebersold, R., Namchuk, M. and Withers, 1995. Substrate-Induced Inactivation of a Crippled β-Glucosidase Mutant: Identification of the Labeled Amino Acid and Mutagenic Analysis of Its Role. Biochemistry. 34(44): 14547-14553.
DOI: https://doi.org/10.1021/bi00044a033.
Ibrahim, A., El-Tayeb, M. A., Elbadawi, Y. B., and Al-Salamah, A. A. 2011. Effects of Substrates and Reaction Conditions on Production of Cyclodextrins using Cyclodextrin Glucanotransferase from Newly Isolated Bacillus agaradhaerens KSU-A11. Electronic Journal of Biotechnology. 14(5): 1-12. DOI: 10.2225/vol14-issue5-fulltext-4.
Downloads
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.