EFFECT OF OHMIC HEATING AS A PRE-TREATMENT METHOD FOR BIODIESEL EXTRACTION FROM MICROALGAE

Authors

  • Imam Sofi'i Department of Agricultural Technology, Politeknik Negeri Lampung, 35144 Bandar Lampung, Indonesia
  • Sumardi Hadi Sumarlan Department of Agricultural Engineering, Faculty of Agricultural Technology, Brawijaya University, 65145 Malang, Indonesia
  • Wignyanto Wignyanto Department of Agro-Industrial Technology, Faculty of Agricultural Technology, Brawijaya University, 65145 Malang, Indonesia
  • Bambang Susilo Department of Agricultural Engineering, Faculty of Agricultural Technology, Brawijaya University, 65145 Malang, Indonesia

DOI:

https://doi.org/10.11113/jt.v81.11716

Keywords:

Pretreatment, microalgae, ohmic heating

Abstract

Microalgae are single cell organisms that have the potential to be developed as feedstock for biodiesel oil. One of the problems of using microalgae as feedstock for biodiesel is in the extraction process. Microalgae extraction requires considerable cost. The purpose of this study was to determine the effect of ohmic heating as a method of pretreatment in microalgae oil extraction. The raw materials used were microalgae paste diluted in two levels cell density, 20 g/L, and 30 g/L. The pretreatment using alternating current (AC) electric with two voltage levels (55 V and 110 V), and the duration of pretreatment was 30 seconds and 60 seconds. The next step was drying and extracting microalgae by solvent extraction method of n-hexane. The results showed that the highest oil yields (14.88%) were obtained by cell density treatment 20 g/L, done for 60 seconds of pretreatment and 110 V voltage. This result was higher than without pretreatment, so the use of pretreatment by ohmic heating can improve extracted oil yield than without pretreatment.

References

Demirbas, A. 2010. Use of Algae as Biofuel Sources. Energy Conversion and Management. 51: 2738-2749. https://doi:10.1016/j.enconman.2010.06.010.

Brennan, L. and Owende, P. 2010. Biofuels from Microalgae: A Review of Technologies for Production, Processing, and Extractions of Biofuels and Co-products. Renewable and Sustainable Energy Reviews. 14: 557-577. https://doi.org/10.1016/j.rser.2009.10.009.

Chisti, Y. 2008. Biodiesel from Microalgae Beats Bioethanol. Trends in Biotechnology. 26: 126-131.

https://doi.org/10.1016/j.biotechadv.2007.02.001.

Mubarak, M., Shaija, A., and Suchithra, T. V. 2015. A Review on the Extraction of Lipid from Microalgae for Biodiesel Production. Algal Research 7: 117-123.

https://doi.org/10.1016/j.algal.2014.10.008.

Daroch, M., Geng, S., and Wang, G. 2013. Recent Advances in Liquid Biofuel Production from Algal Feedstocks. Applied Energy. 102: 1371-1381.

https://doi.org/10.1016/j.apenergy.2012.07.031.

Schenk, P. M., Thomas-Hall, S. R., Stephens, E., Marx, U. C., Mussgnug, J. H., Posten, C., Kruse, O., and Hankamer, B. 2008. Second Generation Biofuels: High-efficiency Microalgae for Biodiesel Production. BioEnergy Research. 1: 20-43.

https://doi.org/10.1007/s12155-008-9008-8.

Teixeira, R. E. 2012. Energy-efficient Extraction of Fuel and Chemical Feedstocks from Algae. Green Chemistry. 14(2): 419-427. https://10.1039/C2GC16225C.

Lee, J. Y., Yoo, C., Jun, S. Y., Ahn, C. Y., and Oh, H. M. 2010. Comparison of Several Methods for Effective Lipid Extraction from Microalgae. Bioresource Technology. 101: S75-S77. https://doi.org/10.1016/j.biortech.2009.03.058.

Prabakaran, P., and Ravindran, A. D. 2011. A Comparative Study on Effective Cell Disruptionmethods for Lipid Extraction from Microalgae. Letters in Applied Microbiology. 53(2): 150-154.

https://doi.org/10.1111/j.1472-765X.2011.03082.x.

Ranjan, A., Patil, C., and Moholkar, V. S. 2010. Mechanistic Assessment Ofmicroalgal Lipid Extraction. Industrial and Engineering Chemistry Research. 49(6): 2979-2985.

https://doi.org/10.1021/ie9016557.

Samarasinghe, N., Fernando, S., Lacey, R., and Faulkner, W. B. 2012. Algal Cell Rupture Using High Pressure Homogenization as a Prelude to Oil Extraction. Renewable Energy. 48: 300-308.

https://doi.org/10.1016/j.renene.2012.04.039.

Halim, R., Harun, R., Danquah, M. K., and Webley, P. A. 2012. Microalgal Cell Disruption for Biofuel Development, Applied Energy. 91(1): 116-121.

https://doi.org/10.1016/j.apenergy.2011.08.048.

Lee, A. K., Lewis, D. M., and Ashman, P. J. 2012. Review Disruption of Microalgal Cells for the Extraction of Lipids for Biofuels: Processes and Specific Energy Requirements. Biomass and Bioenergy. 46: 89-101.

https://doi.org/10.1016/j.biombioe.2012.06.034.

Wang, M., Yuan, W., Jiang, X., Jing, Y., and Wang, Z. 2014. Disruption of Microalgal Cells Using High-frequency Focused Ultrasound. Bioresource Technology. 153: 315-321 https://doi.org/10.1016/j.biortech.2013.11.054.

Biller, P., Friedman, C., and Ross, A. B. 2013. Hydrothermal Microwave Processing of Microalgae as a Pre-treatment and Extraction Technique for Bio-fuels and Bio-products. Bioresource Technology. 136: 188-195.

https://doi.org/10.1016/j.biortech.2013.02.088.

Cheng, J., Yu, T., Li, T., Zhou, J., and Cen, K. 2013. Using Wet Microalgae for Direct Biodiesel Production via Microwave Irradiation. Bioresource Technology. 131: 531-535.

Iqbal, J., and Theegala, C. 2013. Microwave Assisted Lipid Extraction from Microalgae Using Biodiesel as Co-solvent. Algal Research. 2: 34-42.

https://doi.org/10.1016/j.algal.2012.10.001.

Yoo, G., Park, W. K., Kim, C. W., Choi, Y. E., and Yang, J. W. 2012. Direct Lipid Extraction from Wet Chlamydomonas Reinhardtii Biomass Using Osmotic Shock. Bioresource Technology. 123: 717-722.

https://doi.org/10.1016/j.biortech.2012.07.102.

Boyd, A. R., Champagne, P., McGinn, P. J., MacDougall, K. M., and Melanson, J. E. 2012. Switchable Hydrophilicity Solvents for Lipid Extraction from Microalgae for Biofuel Production. Bioresource Technology. 118: 628-632. https://doi.org/10.1016/j.biortech.2012.05.084.

Balasubramanian, R. K., Doan, T. T. Y., and Obbard, J. P. 2013. Factors Affecting Cellular Lipid Extraction from Marine Microalgae. Chemical Engineering Journal. 215-216: 929-936. https://doi.org/10.1016/j.cej.2012.11.063.

Wahlen, B. D., Willis, R. M., and Seefeldt, L. C. 2011. Biodiesel Production by Simultaneous Extraction and Conversion of Total Lipids from Microalgae, Cyanobacteria, and Wild Mixed-Cultures. Bioresource Technology. 102: 2724-2730.

https://doi.org/10.1016/j.biortech.2010.11.026.

Cheng, C. H., Du, T. B., Pi, H. C., Jang, S. M., Lin, Y. H., and Lee, H. T. 2011. Comparative Study of Lipid Extraction from Microalgae by Organic Solvent and Supercritical CO2. Bioresource Technology. 102: 10151-10153.

https://doi.org/10.1016/j.biortech.2011.08.064.

Mouahid, A., Crampon, C., Toudji, S. A. A., and Badens, E., 2013. Supercritical CO2 Extraction of Neutral Lipids from Microalgae: Experiments and Modelling. Journal of Supercritical Fluids. 77: 7-16.

http://dx.doi.org/10.1016/j.supflu.2013.01.024.

Sovová, H. 2012. Steps of Supercritical Fluid Extraction of Natural Products and Their Characteristic Times. Journal of Supercritical Fluids. 66: 73-79.

https://doi.org/10.1016/j.supflu.2011.11.004.

Horst, I., Parker, B. M., Dennis, J. S., Howe, C. J., Scott, S. A., Smith, A. G. 2012. Treatment of Phaeodactylum Tricornutum Cells with Papain Facilitates Lipid Extraction. Journal of Biotechnology. 162: 40-49.

http://dx.doi.org/10.1016/j.jbiotec.2012.06.033.

Fu, C. C., Hung, T. C., Chen, J. Y., Su, C. H., and Wu, W. T. 2010. Hydrolysis of Microalgae Cell Walls for Production of Reducing Sugar and Lipid Extraction. Bioresource Technology. 101: 8750-8754.

https://doi.org/10.1016/j.biortech.2010.06.100.

Sofi’i, I., Sumarlan, S. H., Wignyanto, and Susilo, B. 2017. Combination of High Electric Voltage (Hev) and Nacl as Assisted Extraction Methods for Nannochloropsis sp. Boscience Research. 14(2): 386-394.

http://doi.org/10.5281/zenodo.2557043.

Flisar, K., Meglic, S. H., Morelj, J., Golob, J., and Miklavcic, D. 2014. Testing a Prototype Pulse Generator for a Continuous Flow System and Its Use for E. Coli Inactivation and Microalgae Lipid Extraction. Bioelectrochemistry. 100: 44-51. https://doi.org/10.1016/j.bioelechem.2014.03.008.

Goettel, M., Eing, C., Gusbeth, C., Straessner, R., and Frey, W. 2013. Pulsed Electric Field Assisted Extraction of Intracellular Valuables from Microalgae. Algae Research. 2: 401-408.

https://doi.org/10.1016/j.algal.2013.07.004.

Foltz, G. 2012. Algae Lysis with Pulsed Electric Fields. Master Thesis, California State Polytechnic University, San Luis Obispo Follow.

Kempkes, A. K., Roth, I., and Gaudreau, M. P. J. 2011. Pulsed Electric Field (PEF) Method for Continuous Enhanced Extraction of Oil and Lipids from Small Aquatic Plants. US Patent 2011/0107655 A1, 12 May 2011.

Lai, Y. S., Parameswaran, P., Li, A., M. Baez, and B. E. Rittmann. 2014. Effects of Pulsed Electric Field Treatment on Enhancing Lipid Recovery from the Microalga, Scenedesmus. Bioresource Technology. 173: 457-461.

https://doi.org/10.1016/j.biortech.2014.09.124.

Eing, C., Goettel, M., Straessner, R., Gusbeth, C., and Frey, W. 2013. Pulsed Electric Field Treatment of Microalgae-Benefits for Microalgae Biomass Processing. IEEE Transactions on Plasma Science. 41(10): 2901-2907.

https://doi.org/10.1109/TPS.2013.2274805.

Zbinden, M. D. A., Strum, B. S. M, Nord, R. D., Carey, W. J., Moore, D., Shinogle, H., and Stagg-Williams, S. M. 2013. Pulsed Electric Field (PEF) as an Intensification Pretreatment for Greener Solvent Lipid Extraction from Microalgae. Biotechnolology and Bioengineering. 110: 1605-1615.

https://doi.org/10.1002/bit.24829.

Sheng, J., Vannela, R., and Rittmann, B. E. 2011. Evaluation of cell-disruption effects of pulsed-electric-field treatment of Synechocystis PCC 680. Environmental Science & Technology. 45: 3795-3802. https://doi.org/10.1021/es103339x.

Islam, M. S., Aryasomayajula, A., and Selvaganapathy, P. R. 2017. A Review on Macroscale and Microscale Cell Lysis Methods. Micromachines. 8: 83.

DOI: 10.3390/mi8030083.

He, Z., and Lin, J.-M. 2018. Recent Developmnet of Cell Analysis on Microfluidics (Chapter 2) in Cell Analysis on Microfluidics. Integrated Analytical System. ISSN 2196-4483 (electronic), ISBN 978-981-10-5394-8 (eBook). https://doi.org/10.1007/978-981-10-5394-8.

Lakkakula, N., Lima, M., and Walker, T. 2004. Rice Bran Stabilization and Rice Bran Oil Extraction using Ohmic Heating. Journal of Bioresource Technology. 92: 157-161. https://doi.org/10.1016/j.biortech.2003.08.010.

Pucihar, G., Kotnik, T., Kanduser, M., and Miklavcic, D. 2001. The Influence of Medium Conductivity on Electropermeabilization and Survival of Cells in Vitro. Bioelectrochemistry. 54: 107-115.

https://doi.org/10.1016/S1567-5394(01)00117-7.

Ivorra. A., Villemejanebcd, J., and Mir, L. M. 2010. Electrical Modeling of the Influence of Medium Conductivity on Electroporation. Physical Chemistry Chemical Physics. 12: 10055-10064. DOI: 10.1039/c004419a.

Icier. F., and Ilicali, C. 2005. Temperature Dependent Electrical Conductivities of Fruit Purees during Ohmic Heating. Food Research International. 38: 1135-1142. https://doi.org/10.1016/j.foodres.2005.04.003.

Olofsson. M., Lamela, T., Nilsson, E., Bergé, J. P. l., Pino, V. del, Uronen, P., and Legrand, C. 2012. Seasonal Variation of Lipids and Fatty Acids of the Microalgae Nannochloropsis oculata Grown in Outdoor Large-Scale Photobioreactors. Energies. 5(5): 1577-1592.

https://doi.org/10.3390/en5051577.

Downloads

Published

2019-04-01

Issue

Section

Science and Engineering

How to Cite

EFFECT OF OHMIC HEATING AS A PRE-TREATMENT METHOD FOR BIODIESEL EXTRACTION FROM MICROALGAE. (2019). Jurnal Teknologi, 81(3). https://doi.org/10.11113/jt.v81.11716