BIOSYNTHESIS OF SILVER NANOPARTICLES FROM MARINE POLYCHAETE DIOPATRA CLAPAREDII GRUBE, 1878

Authors

  • Nur Shaheera Hussain School of Fundamental Science, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
  • Noor Aniza Harun School of Fundamental Science, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
  • Mohd Naim Fadhli Mohd Radzi School of Fundamental Science, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
  • Izwandy Idris School of Marine and Environmental Sciences, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia and South China Sea Repository and Reference Centre, Institute of Oceanography and Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
  • Wan Iryani Wan Ismail School of Fundamental Science, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia

DOI:

https://doi.org/10.11113/jt.v80.11720

Keywords:

Silver nanoparticles (AgNPs), green technology, marine organisms, polychaetes, Malaysian shore

Abstract

Silver nanoparticles (AgNPs) offer a broad range of high commercial value applications. However, current techniques to synthesize AgNPs using chemical and physical approaches are toxic to the environment and not cost-effective in the long-term. Therefore, utilization of green biological synthesis technique to produce AgNPs is one of the solutions. In this study, marine polychaete Diopatra claparedii was used to investigate its potential in synthesizing AgNPs. Specimens were collected from tidal flats adjacent to the mangrove forest in the west coast of Peninsular Malaysia and divided into two groups: freshly prepared (acclimatized in aquaria) and frozen (kept in the freezer) samples. Samples from both groups were cut, finely pulverized, filtrated, and mixed with silver nitrate (AgNO3) at room temperature. Colour changes were recorded after 24 hours, 2 weeks, and 8 weeks of incubation. Formation of AgNPs was quantified using UV-Vis spectroscopy analysis, where surface Plasmon resonance (SPR) peaks were observed in the range of 400–440 nm, confirming the formation of the AgNPs. Subsequently, the synthesized nanoparticles were validated using scanning electron microscope. AgNPs showed weak antibacterial activity because of aggregation. Further studies are required to confirm the findings.

Author Biography

  • Wan Iryani Wan Ismail, School of Fundamental Science, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
    Program Biologi

References

Bhimba, B. V., Meenupriya, J., Joel, E. L., Naveena, D. E., Kumar, S. and Thangaraj, M. 2010. Antibacterial Activity and Characterization of Secondary Metabolites Isolated from Mangrove Plant Avicennia officinalis. Asian Pacific Journal of Tropical Medicine. 3(7): 544-546.

DOI: https://doi.org/10.1016/S1995-7645(10)60131-9.

Nath, B. and Banerjee, P. 2013. Green Nanotechnology-A New Hope for Medical Biology. Environmental Toxicology and Pharmacology. 36(3): 997-1014.

DOI: https://doi.org/10.1016/j.etap.2013.09.002.

Smith, A. M., Duan, H., Rhyner, M. N., Ruan, G. and Nie, S. 2006. A Systematic Examination of Surface Coatings on the Optical and Chemical Properties of Semiconductor Quantum Dots. Phys Chem Chem Phys. 33: 3895-3903.

DOI: https://doi.org/10.1039/b606572b.

Williams, D. 2008. The Relationship between Biomaterials and Nanotechnology. Biomaterials. 29(12): 1737-1738.

DOI: https://doi.org/10.1016/j.biomaterials.2008.01.003.

Rao, C. N. R., Vivekchan, S. R. C., Biswas, K. and Govindaraj, A. 2007. Synthesis of Inorganic Nanomaterials. Dalton Transactions. 34: 3728-3749.

DOI: https://doi.org/10.1039/b708342d.

Ankanna, S., Prasad, T. N. V. K. V., Elumalai, E. K. and Savithramma, N. 2010. Production of Biogenic Silver Nanoparticles using Boswellia Ovalifoliolata Stem Bark. Digest Journal of Nanomaterials and Biostructures. 5(2): 369-372.

Ravindran, P., Chandran, P. and Khan, S. S. 2013. Biofunctionalized Silver Nanoparticles: Advances and Prospects. Colloids and Surfaces B Biointerfaces. 105: 342-352.

DOI: https://doi.org/10.1016/j.colsurfb.2012.07.036.

Singh, R., Sahu, S. K. and Thangaraj, M. 2014. Biosynthesis of Silver Nanoparticles by Marine Invertebrate (Polychaete) and Assessment of Its Efficacy Against Human Pathogens. Journal of Nanoparticles. 1-7.

DOI: http://dx.doi.org/10.1155/2014/718240.

Grube, A. E. 1878. Annulata Semperiana. Beiträge zur Kenntniss der Annelidenfauna der Philippinen. Memoires de L'Academie Imperiale.des Sciences de St.Petersbourg., Ser. 7, 25(8): 1-300.

Idris, I., Hutchings, P. A. and Arshad, A. 2013. Checklist of Polychaetous Annelids in Malaysia with Redescription of Two Commercially Exploited Species. Asian Journal of Animal and Veterinary Advances. 409-436.

DOI: https://doi.org/10.3923/ajava.2013.409.436.

Krishnaraj, C., Jagan, E. G., Rajasekar, S., Selvakumar, P., Kalaichelvan, P. T. and Mohan, N. 2010. Synthesis of Silver Nanoparticles using Acalypha indica Leaf Extracts and Its Antibacterial Activity Against Water Borne Pathogens. Colloids Surface B Biointerfaces. 76(1): 50-56.

DOI: https://doi.org/10.1016/j.colsurfb.2009.10.008.

Jayaseelan, C., Rahuman, A. A., Rajakumar, G., Vishnu Kirthi, A., Santhoshkumar, T., Marimuthu, S., Bagavan, A., Kamaraj, C., Zahir, A. A. and Elango, G. 2011. Synthesis of Pediculicidal and Larvicidal Silver Nanoparticles by Leaf Extract from Heartleaf Moonseed Plant, Tinospora cordifolia Miers. Parasitol Res. 109(1): 185-194.

DOI: https://doi.org/10.1007/s00436-010-2242-y.

Anuj, S. A. and Ishnav, K. B. 2014. Plant Mediated Synthesis of Silver Nanoparticles by Using Dried Stem Powder of Tinospora cordifolia, Its Antibacterial Activity and Comparison with Antibiotics. International Journal Pharmaceutical Bio Science. 4: 849-863.

Stepanov, A. L. 1997. Optical Properties of Metal Nanoparticles Synthesised in a Polymer by Ion Implantation. Technology Physics. 49(2): 143-153.

DOI: https://doi.org/10.1134/1.1648948.

Kelly, K. L., Coronado, E., Zhao, L. L. and Schatz, G. C. 2013. The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape and Dielectric Environment. Journal Physics Chemistry. 107(3): 668-677.

DOI: https://doi.org/10.1021/jp026731y.

Maiti, S., Barma, G. and Konar, L. J. 2013. Synthesis of Silver Nanoparticles Having Different Morphologies and Its Application in Estimation of Chlorpyrifos. Advance Science Focus. 1(2): 145-149.

DOI: https://doi.org/10.1166/asfo.2013.1028.

Barman, G., Samanta, A, Maiti, S. and Konar, L. J. 2014. Detection of Cu+2 Ion by the Synthesis of Bio-Mass-Silver Nanoparticle Nanocomposites. International Journal Scientific and Engg Res. 5(6): 1086-1097.

Korinek, V. V., Sacherova, V. and Havel, L. 1997. Subgeneric Differences in Head Shield and Ephippia Ultrastructure within the Genus Bosmina Baird (Crustacea, Cladocera). Hydrobiologia. 360: 13-23.

DOI: https://doi.org/10.1023/A:1003181706280.

Inoue, T. and Osatake, H. 1988. A New Drying Method of Biological Specimens for Scanning Electron Microscopy: the t-Butyl Alcohol freezeephippium Drying Method. Arch. Histology Cytology. 51(1): 53-59.

DOI: https://doi.org/10.1679/aohc.51.53.

van Berkel. K. Y. and Hawker, C. J. 2010. Tailored Composite Polymer–metal Nanoparticles by Miniemulsion Polymerization and Thiol-ene Functionalization. Journal of Polymer Science Part A: Polymer Chemistry. 48(7): 1594-1606.

DOI: https://doi.org/10.1002/pola.23917.

Cho, K. H., Park, J. E., Osaka, T. and Park, S. G. 2005. The Study of Antimicrobial Activity and Preservative Effects of Nanosilver Ingredient. Electrochim Acta. 51(5): 956-960.

DOI: https://doi.org/10.1016/j.electacta.2005.04.071.

Petrus, E. M., Tinakumari, S., Chai, L. C., Ubong, A., Tunung, R., Elexson, N., Chai, L. F. and Son, R. 2011. A Study on the Minimum Inhibitory Concentration and Minimum Bactericidal Concentration of Nano Colloidal Silver on Food-Borne Pathogens. International Food Research Journal. 18: 55-66.

Zhang, M., Zhang, K., De Gusseme, B., Verstraete, W. and Field, R. 2014. The Antibacterial and Anti-biofouling Performance of Biogenic Silver Nanoparticles by Lactobacillus fermentum. Biofouling. 30(3): 347-357.

DOI: https://doi.org/10.1080/08927014.2013.873419.

Lu, Z., Rong, K., Li, J., Yang, H. and Chen, R. 2013. Size-dependent Antibacterial Activities of Silver Nanoparticles Against Oral Anaerobic Pathogenic Bacteria. Journal of Materials Science: Materials in Medicine. 24(6): 1465-1471.

DOI: https://doi.org/10.1007/s10856-013-4894-5.

Feng, Q., Wu, J. and Chen, G. 2000. A Mechanistic Study of the Antibacterial Effect of Silver Ions on Escherichia coli and Staphylococcus aureus. Journal Biomedical Mater Resources. 52(4): 662-668.

DOI: https://doi.org/10.1002/1097-4636(20001215)52:4 <662::AID-JBM10>3.0.CO;2-3.

Rai, M., Yadav, A. and Gade, A. 2009. Silver Nanoparticles as a New Generation of Antimicrobials. Biotechnology Advance. 27(1): 76-83.

DOI: https://doi.org/10.1016/j.biotechadv.2008.09.002.

Cao, Y. W., Jin, R. and Mirkin, C. A. 2001. DNA-modified Core–shell Ag/Au Nanoparticles. J Am Chem Soc. 123(32): 7961-7962.

DOI: https://doi.org/10.1021/ja011342n.

Eby, D. M., Schaeublin, N. M., Farrington, K. E., Hussain, S. M and Johnson, G. R. 2009. Lysozyme Catalyzes the Formation of Antimicrobial Silver nanoparticles. ACS Nanotechnology. 3(4): 984-994. DOI: https://doi.org/10.1021/nn900079e.

Downloads

Published

2018-09-19

Issue

Section

Science and Engineering

How to Cite

BIOSYNTHESIS OF SILVER NANOPARTICLES FROM MARINE POLYCHAETE DIOPATRA CLAPAREDII GRUBE, 1878. (2018). Jurnal Teknologi (Sciences & Engineering), 80(6). https://doi.org/10.11113/jt.v80.11720