INVESTIGATION OF TORQUE GENERATION CAPABILITY OF MIXED FLOW TURBINE UNDER STEADY STATE CONDITIONS

Authors

  • M. A. S. Izaiddin UTM-Centre for Low Carbon Transport in cooperation with Imperial College London, Universiti Teknologi Malaysia, 81310 UTM Johor Bharu, Johor, Malaysia
  • A. F. Mustaffa UTM-Centre for Low Carbon Transport in cooperation with Imperial College London, Universiti Teknologi Malaysia, 81310 UTM Johor Bharu, Johor, Malaysia
  • M. H. Padzillah UTM-Centre for Low Carbon Transport in cooperation with Imperial College London, Universiti Teknologi Malaysia, 81310 UTM Johor Bharu, Johor, Malaysia

DOI:

https://doi.org/10.11113/jt.v79.11924

Keywords:

Mixed flow turbine, Steady flow, torque, computational fluid dynamics, turbomachinery

Abstract

A mixed flow turbine is a type of turbine that is used mostly in turbocharger engine for vehicle. The ability of this turbine in obtain maximum efficiency on a wider operating range makes it more favorable compared to axial turbine and radial turbine. In this project, one of the factors affecting turbine performance which is torque has been studied using simulation. The simulation is then being run by varying the mass flow supply to the turbine. In this simulation, torque generation has been identified and plot on the entire blade surface. This torque generation capability is then been compared between 0.25 kg/s, 0.45 kg/s and 0.65 kg/s mass flow. From the simulation, the torque generated is founded to fluctuate along the turbine blade surface. Besides, the torque generated at the leading edge and trailing edge surface are negative. The magnitude of torque generated increases, as the mass flow increased. At the mid span of the blade, torque generated at 0.25 kg/s, 0.45 kg/s and 0.65 kg/s is -3.73 X 10-3Nm, 4.33 X 10-3Nm, and 11.8 X 10-3Nm respectively.

References

S. Rajoo and R. Martinez-Botas. 2008. Mixed Flow Turbine Research: A Review. ASME J. Turbomach. 130: 12.

H. C. and N. C. Baines. 1994. The Aerodynamic Loading of Radial and Mixed-flow Turbines. 36(1): 63-79.

F. J. Wallace and G. P. Blair. 1965. The Pulsating Flow Performance of Inward Radial-Flow Turbine. Proc ASME Turbo Expo No. 65-GTP-21. 1-19.

C. Arcoumanis, I. Hakeem, L. Khezzar, R. F. Martinez-Botas, and N. C. Baines. 1995. Performance of a Mixed Flow Turbocharger Turbine Under Pulsating Flow Conditions. ASME Pap. No. 95-GT-210.

N. Karamanis, R. F. Martinez-Botas, and C. C. Su. 2001. Mixed Flow Turbines: Inlet and Exit Flow Under Steady and Pulsating Conditions. J. Turbomach. 123(2): 359.

M. S. Chiong, M. H. Padzillah, S. Rajoo, A. Romagnoli, A. W. Costall, and R. F. Martinez-Botas. 2015. Comparison of Experimental, 3D and 1D Model for a Mixed-flow Turbine Under Pulsating Flow Conditions. 77(8): 61-68.

M. S. Chiong, S. Rajoo, R. F. Martinez-Botas, and A. Costall, 2011, Engine Turbocharger Performance Prediction: One-Dimensional Modeling of a Twin Entry Turbine. Energy Convers. Manag. 57: 68-78.

M. S. Chiong, S. Rajoo, A. Romagnoli, and R. F. Martinez-Botas. 2012. Single Entry Mixed Flow Turbine Performance Prediction with 1-D Gas Dynamic Code Coupled with Mean Line Model. Int. J. Gas Turbine, Propuls. Power Syst. 4(2): 8-16.

M. S. Chiong, S. Rajoo, A. Romagnoli, A. W. Costall, and R. F. Martinez-Botas. 2015. Non-adiabatic Pressure Loss Boundary Condition for Modelling Turbocharger Turbine Pulsating Flow. Energy Convers. Manag. 93.

D. Palfreyman and R. F. Martinez-Botas. 2004. The Pulsating Flow Field in a Mixed Flow Turbocharger Turbine: AN Experimental and Computational Study. Proceedings of the ASME Turbo Expo 2004. 5 A: 697-708.

M. H. Padzillah, S. Rajoo, and R. F. Martinez-Botas. 2014. Influence of Speed and Frequency Towards the Automotive Turbocharger Turbine Performance Under Pulsating Flow Conditions. Energy Convers. Manag. 80: 416-428.

M. H. Padzillah, S. Rajoo, M. Yang, and R. F. Martinez-Botas, Jul. 2015. Influence of Pulsating Flow Frequencies Towards the Flow Angle Distributions of an Automotive Turbocharger Mixed-Flow Turbine. Energy Convers. Manag. 98: 449-462.

S. Rajoo. 2007. Steady and Pulsating Performance of a Variable Geometry Mixed Flow Turbocharger Turbine. Imperial College of Science. Technology and Medicine.

S. Szymko, R. F. Martinez-Botas, and K. R. Pullen. 2005. Experimental Evaluation of Turbocharger Turbine Performance Under Pulsating Flow Conditions. Turbo Expo 2005, Parts A and B. 6 PART B: 1447-1457.

S. Szymko, N. R. McGlashan, R. Martinez-Botas, and K. R. Pullen. 2007. The Development of a Dynamometer for Torque Measurement of Automotive Turbocharger Turbines. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 221(2): 225-239.

M. H. Padzillah. 2014. Experimental and Numerical Investigation of an Automotive Mixed Flow Turbocharger Turbine under Pulsating Flow Conditions. PHD Thesis. March.

M. Abidat. 1991. Design and Testing of a Highly Loaded Mixed Flow Turbine. Imperial College of Science. Technology and Medicine, University of London.

M. H. Padzillah, S. Rajoo, and R. F. Martinez-Botas. 2016. Comparison of Flow Field Between Steady and Unsteady Flow of an Automotive Mixed Flow Turbocharger Turbine. J. Teknol. 78(8-4).

M. H. Padzillah, S. Rajoo, and R. F. Martinez-Botas. 2016. Pressure Distribution on the Blade Surface of an Automotive Mixed Flow Turbocharger Turbine Under Pulsating Flow Conditions. J. Teknol. 78(8-4).

N. Karamanis. 2002. Mixed-flow Turbines for Automotive Turbochargers: Steady and Unsteady Performance. 3(3).

Downloads

Published

2017-11-20

How to Cite

INVESTIGATION OF TORQUE GENERATION CAPABILITY OF MIXED FLOW TURBINE UNDER STEADY STATE CONDITIONS. (2017). Jurnal Teknologi (Sciences & Engineering), 79(7-3). https://doi.org/10.11113/jt.v79.11924