PARAMETRIC ESTIMATION METHODS FOR BIVARIATE COPULA IN RAINFALL APPLICATION

Authors

DOI:

https://doi.org/10.11113/jt.v81.12059

Keywords:

Bivariate copula, maximum likelihood, Inference function of margins, adaptive maximization by parts, rainfall

Abstract

This study focuses on the parametric methods: maximum likelihood (ML), inference function of margins (IFM), and adaptive maximization by parts (AMBP) in estimating copula dependence parameter. Their performance is compared through simulation and empirical studies. For empirical study, 44 years of daily rainfall data of Station Kuala Krai and Station Ulu Sekor are used. The correlation of the two stations is statistically significant at 0.4137. The results from the simulation study show that when the sample size is small (n <1000) for correlation level less than 0.80, IFM has the best performance. While, when the sample size is large (n ≥ 1000) for any correlation level, AMBP has the best performance. The results from the empirical study also show that AMBP has the best performance when the sample size is large. Thus, in order to estimate a precise Copula dependence parameter, it can be concluded that for parametric approaches, IFM is preferred for small sample size and has correlation level less than 0.80 and AMBP is preferred for larger sample size and for any correlation level. The results obtained in this study highlight the importance of estimating the dependence structure of the hydrological data. By using the fitted copula, Malaysian Meteorological Department will able to generate hydrological events for a system performance analysis such as flood and drought control system.

Author Biographies

  • Rahmah Mohd Lokoman, Mathematical Department, Faculty of Science, Universiti Teknologi Malaysia, 81300 UTM Johor Bahru, Johor, Malaysia
    Postgraduate student
    Department of Mathematics,Faculty of Science,Universiti Teknologi Malaysia,Skudai, Johor,Malaysia
  • Fadhilah Yusof, Mathematical Department, Faculty of Science, Universiti Teknologi Malaysia, 81300 UTM Johor Bahru, Johor, Malaysia
    Assoc. Prof. Dr. Fadhilah Binti YusofDepartment of Mathematics,Faculty of Science,Universiti Teknologi Malaysia,Skudai, Johor,Malaysia

References

Sklar, A. 1959. Fonctions de répartition à n dimensions et leurs marges. Publications de l’Institut de Statistique de L’Université de Paris. 8: 229-231.

Zhang, L., & Singh, V. P. 2007. Bivariate Rainfall Frequency Distributions Using Archimedean Copulas. Journal of Hydrology. 332(1-2): 93-109.

DOI: https://doi.org/10.1016/j.jhydrol.2006.06.033.

Yee, K. C., Jamaludin, S., Yusof, F., and Mean, F. H. 2014. Bivariate Copula in Fitting Rainfall Data. AIP Conference Proceedings. 1605(1): 986-990.

DOI: http://dx.doi.org/10.1063/1.4887724.

Kim, G., Silvapulle, M., and Silvapulle, P. 2007. Comparison of Semiparametric and Parametric Methods for Estimating Copulas. Computational Statistics & Data Analysis. 51: 2836-2850.

DOI: https://doi.org/10.1016/j.csda.2006.10.009.

Kim, T. W., Valdés, J. B., and Yoo, C. 2006. Nonparametric Approach for Bivariate Drought Characterization Using Palmer Drought Index. Journal of Hydrologic Engineering. 11(2): 134-143.

DOI: https://doi.org/10.1061/(ASCE)1084-0699(2006)11:2(134).

Kojadinovic, I., and Yan, J. 2010. Comparison of Three Semiparametric Methods for Estimating Dependence Parameters in Copula Models. Insurance: Mathematics and Economics. 47: 52-63.

DOI: https://doi.org/10.1016/j.insmatheco.2010.03.008.

Lawless, J. F., and Yilmaz, Y. E. 2011. Comparison of Semiparametric Maximum Likelihood Estimation and Two-Stage Semiparametric Estimation in Copula Models. Computational Statistics and Data Analysis. 55: 2446-2455.

DOI: https://doi.org/10.1016/j.csda.2011.02.008.

Nagler, T., Schellhase, C., and Czado, C. 2017. Nonparametric Estimation of Simplified Vine Copula Models: Comparison of Methods. Dependence Model. 5: 99-120.

DOI: https://doi.org/10.1515/demo-2017-0007.

Taheri, B. M., Jabbari, H., and Amini M. 2018. Parameter Estimation of Bivariate Distributions in Presence of Outliers: An Application to FGM Copula. Journal of Computational and Applied Mathematics. 343: 155-173.

DOI: https://doi.org/10.1016/j.cam.2018.04.043.

Dupuis, D. J. 2007. Using Copulas in Hydrology: Benefits, Cautions, and Issues. Journal of Hydrologic Engineering. 12(4): 381-393.

DOI: https://doi.org/10.1061/(ASCE)1084-0699(2007)12:4(381).

Zhang, R., Czadoa, C., and Min, A. 2011. Efficient maximum Likelihood Estimation of Copula based Meta t-distributions. Computational Statistics & Data Analysis. 55(3): 1196-1214.

DOI: https://doi.org/10.1016/j.csda.2010.09.027.

Joe, H. and Xu, J. J. 1996. The Estimation Method of Inference Functions for Margins for Multivariate Models. Technical Report no. 166. Department of Statistics, University of British Columbia.

DOI: http://dx.doi.org/10.14288/1.0225985.

Joe, H. 2005. Asymptotic Efficiency of the Two-Stage Estimation Method for Copula-Based Models. Journal of Multivariate Analysis. 94: 401-419.

DOI: https://doi.org/10.1016/j.jmva.2004.06.003.

Song, P. X. K., Fan, Y., and Kalbfleisch, J. D. 2005. Maximization by Parts in Likelihood Inference. Journal of the American Statistical Association. 100(472): 1145-1158.

DOI: http://dx.doi.org/10.1198/016214505000000204.

Silvennoinen, A. and Teräsvirta, T. 2017. Consistency and Asymptotic Normality of Maximum Likelihood Estimators of A Multiplicative Time-varying Smooth Transition Correlation GARCH Model. Research Paper 2017-28. CREATES, Aarhus University, Aarhus.

Frazier, D. T. and Renault, E. 2017. Efficient Two-step Estimation Via Targeting. Journal of Econometrics. 201(2): 212-227.

DOI: http://dx.doi.org/10.1016/j.jeconom.2017.08.004.

Ariff, N.M., Jemain, A.A., Ibrahim, K., and Wan Zin, W.Z. 2012. IDF Relationships Using Bivariate Copula for Storm Events In Peninsular Malaysia. Journal of Hydrology. 470-471, 158-171.

DOI: https://doi.org/10.1016/j.jhydrol.2012.08.045.

Requena, A. I., Mediero, L., and Garrote, L. 2013. A Bivariate Return Period Based on Copulas For Hydrologic Dam Design: Accounting for Reservoir Routing in Risk Estimation. Hydrology and Earth System Sciences. 17: 3023-3038.

DOI: https://doi.org/10.5194/hess-17-3023-2013.

Yusof, F., Mean, F. H., Jamaludin, S., and Yusof, Z. 2013. Characterization of Drought Properties with Bivariate Copula Analysis. Water Resource Management. 27: 4183-4207.

DOI: https://doi.org/10.1007/s11269-013-0402-4.

Vandenberghe, S., Verhoest, N. E. C., and De Baets, B. 2010. Fitting Bivariate Copulas to the Dependence Structure between Storm Characteristics: A Detailed Analysis based on 105 Year 10 Min Rainfall. Water Resources Research. 46: W01512.

DOI: http://dx.doi.org/10.1029/2009WR007857.

Chen, L., Singh, V. P., Guo, S., Zhou, J., and Zhang, J. 2015. Copula-based Method for Multisite Monthly and Daily Streamflow Simulation. Journal of Hydrology. 528: 369-384.

DOI: https://doi.org/10.1016/j.jhydrol.2015.05.018.

Clayton, D. G. 1978. A Model for Association in Bivariate Life Tables and Its Application in Epidemiological Studies of Familial Tendency in Chronic Disease Incidence. Biometrika. 65(1): 141-151.

DOI: https://doi.org/10.1093/biomet/65.1.141.

Downloads

Published

2018-11-04

Issue

Section

Science and Engineering

How to Cite

PARAMETRIC ESTIMATION METHODS FOR BIVARIATE COPULA IN RAINFALL APPLICATION. (2018). Jurnal Teknologi, 81(1). https://doi.org/10.11113/jt.v81.12059