SIMULATION ON THE CONDITIONS AFFECTING PARTIAL DISCHARGE INITIATION IN MICROBUBBLE IMMERSED IN DIELECTRIC LIQUID
DOI:
https://doi.org/10.11113/jt.v80.12061Keywords:
Partial discharge, simulation, dielectric liquid, transformer, microbubbleAbstract
Microbubble floating in liquid dielectric and subjected to an electric field may initiate partial discharge (PD). This paper studies the parameters that affect the initiation through a computer simulation. This study inspects how the type of gas inside the microbubble, the size of the microbubble, distance from an electric field, Eo, source and, the magnitude of source’s voltage affect the start of PD. For a prolate spheroid shape, there is an important parameter called ‘c’. This ratio is between the radius of the microbubble polar (‘a’) and the radius of the equator (‘b’). At constant Eo and c, different gases will initiate PD at different distances from source due to differences in a localised electric field inside the microbubble (Emax). Emax is one of the important factors for PD initiation. It is interesting to report that if the ‘a’ and ‘b’ values are chosen so that ‘c’ will be constant, changes in Emax are insignificant. On the other hand, changes in ‘c’ will result in significant changes in Emax. Finally, changes in source’s voltage certainly affect the Emax.
References
M. Shafiq, L. Kutt, M. Isa, M. Hashmi, M. Lehtonen. 2012. Directional Calibration of Rogowski Coil for Localization of Partial Discharges in Smart Distribution Networks. International Review of Electrical Engineering. 7(5): 5881-5890.
Kolb, J. F., Joshi, R. P., Xiao, S., and Schoenbach. K. H. 2008. Streamers in Water and other Dielectric Liquids. Journal of Physics D: Applied Physics. 41(23): 234007.
DOI: doi.org/10.1088/0022-3727/41/23/ 234 007.
Jin, H. 2015. Dielectric Strength and Thermal Conductivity of Mineral Oil based Nanofluids. TU Delft. PhD Thesis.
DOI: doi.org/10.4233/uuid:10d18961-a23f-478e-b6e2-181d897d8541.
Sun, A., Huo, C., and Zhuang, J. 2016. Formation Mechanism of Streamer Discharges in Liquids: A Review. High Voltage. 1(2): 74-80.
DOI: doi.org/10.1049/hve.2016.0016.
Wang, X. 2011. Partial Discharge Behaviours and Breakdown Mechanisms of Ester Transformer Liquids Under AC Stress. University of Manchester. PhD Thesis.
____. 2000. IS/IEC 60270 (2000): High-Voltage Techniques Measurements [ETD 19: High Voltage Engineering]. New Delhi: Bureau of Indian Standards.
M. N. K. H. Rohani, C. C. Yii, M. Isa, S. I. S. Hassan, A. Mukhtaruddin, N. A. Yusof, B. Ismail. 2015. Effect of unshielded and Shielded Rogowski Coil Sensor Performance for Partial Discharge Measurement. 2015 IEEE Student Conference on Research and Development, SCOReD 2015, Pages 21-25, 13-14 December, 2015, Kuala Lumpur, Malaysia.
DOI: 10.1109/SCORED.2015.7449325.
Abd Rahman, M. S. 2014. Identification of Partial Discharge Sources and Their Location Within High Voltage Transformer Windings. University of Southampton. PhD Thesis.
Chakravorti, S., Dey, D. and Chatterjee, B. 2013. Recent Trends in the Condition Monitoring of Transformers: Theory, Implementation and Analysis. London: Springer-Verlag,
DOI: doi.org/10.1007/978-1-4471-5550-8.
Niasar, M. G. 2012. Partial Discharge Signatures of Defects in Insulation Systems Consisting of Oil and Oil-Impregnated Paper. The Royal Institute of Technology: Licentiate Thesis.
Chen, G., Illias, H. A. and Lewin, P. L. 2012. Partial Discharge Within a Spherical Cavity in a Dielectric Material as a Function of Cavity Size and Material Temperature. IET Science, Measurement and Technology. 6(2): 52–62.
DOI: doi.org/10.1049/iet-smt.2011.0091.
Tang, J., Ma, S., Zhang, M., Liu, Z., Li, X. and Gui, Y.. 2015. Influence of Microbubbles Motion State on Partial Discharge in Transformer Oil. IEEE Transaction on Dielectrics and Electrical Insulation. 22(5): 2646-2652.
DOI: doi.org/10.1109/TDEI.2015.005028.
Pompili, M. and Bartnikas, R. 2014. Gas Formation in Transient Cavities Undergoing PD Pulse Burst Discharges in Transformer Oils. IEEE Transaction on Plasma Science. 42(6): 1697–1703.
DOI: doi.org/10.1109/TPS.2014.2317847.
Grav, T. 2013. Mechanisms Governing the occurrence of Partial Discharges in Insulation Liquids. Norwegian University of Science and Technology. Master Thesis.
Eikeset, J. 2014. Photon Activity from Partial Discharges in Liquid Dielectrics Experimental Test Setup and Measurements. Norwegian University of Science and Technology. Master Thesis.
http://hdl.handle.net/11250/257994.
Korobeynikov, S. M., Bychkov, A. L., Ryzhkina, A. Y., Sviridenko, M. V., Darian, L. A. and Melekhov, A. V. 2013. Microbubbling in Transformer Oil due to Vibration. IEEE Transaction on Dielectrics and Electrical Insulation. 20(2): 675-677.
DOI: doi.org/10.1109/TDEI.2013.6508771
Marinov, I. 2013. Plasmas dans l’eau et Aux Interfaces. Université Paris Sud-Paris XI. PhD Thesis.
Sun, H. C., Huang, Y. C. and Huang, C. M. 2012. A Review of Dissolved Gas Analysis in Power Transformers. Energy Procedia. 14(2012): 1220-1225
DOI: doi.org/10.1016/j.egypro.2011.12. 1079.
Bakar, N., Abu-Siada, A. and Islam, S. 2014. A Review of Dissolved Gas Analysis Measurement and Interpretation Techniques. IEEE Electrical Insulation Magazine. 30(3): 39-49.
DOI: doi.org/10.1109/MEI.2014.6804740.
Berger, L. I. 2006. Dielectric Strength of Insulating Materials. In D.R. Lide (ed.) CRC Handbook of Chemistry and Physics. Boca Raton: Taylor and Francis.
DOI: doi.org/10.1021/ja069813z.
Tereshonok, D. V. 2016. Cavitation in Liquid Dielectric under Nanosecond High-Voltage Impulse. Journal of Physics D: Applied Physics. 50(1): 15603.
DOI: doi.org/10.1088/1361-6463/50/1/015603.
Babaeva, N. Y., Tereshonok, D. V. and Naidis, G. V. 2015. Initiation of Breakdown in Bubbles Immersed in Liquids: Pre-Existed Charges Versus Bubble Size. Journal of Physics D: Applied Physics. 48(35): 355201.
DOI: doi.org/10.1088/0022-3727/48/35/355201.
Drexler, P. , Cap, M., Fiala, P., Steinbauer, M., Kaska, M. and Kocis, L. 2015. Advanced Methods of UHF EM Diagnostic of Discharge Activity in High Voltage Transformers Dielectric. Progress In Electromagnetics Research Symposium Proceedings. 2448-2452.
Niasar, M. G., Edin, H., Wang, X. and Clemence, R. 2011, August. Partial Discharge Characteristics due to Air and Water Vapor Bubbles in Oil, XVII International Symposium on High Voltage Engineering.
Haberman, W. L. and Morton, R. K. 1953. An Experimental Investigation of the Drag and Shape of Air Bubbles Rising in Various Liquids. Fort Delvoir: Defense Technical Information Center.
Dong, M., Shen, L. P., Wang, H., Wang, H. B. and Miao, J. 2013. Investigation on the Electrical Conductivity of Transformer Oil-Based AlN Nanofluid. Journal of Nanomater. 2013: 164.
DOI: doi.org/10.1155/2013/842963.
Judendorfer, T., Pirker, A. and Muhr, M. 2011. June. Conductivity Measurements of Electrical Insulating Oils. 2011 IEEE International Conference on Dielectric Liquids (ICDL). 1-4.
DOI: doi.org/10.1109/ICDL.2011.6015456.
Badicu, L. V., Notingher, P. V., Dumitran, L. M., Tanasescu, G. and Popa, D. 2009. Measuring of the Dielectric Properties of Mineral Oil. Proceedings of 5th International Conference Metrology & Measurement Systems. 284-289.
Spohner, M. 2012. A Study of the Properties of Electrical Insulation Oils and of the Components of Natural Oils. Acta Polytechnica. 52(5).
Younglove, B. A. and Ely, J. F. 1987. Thermophysical Properties of Fluids. II. Methane, Ethane, Propane, Isobutane, and Normal Butane. Journal of Physical and Chemical Reference Data. 16(4): 577-798.
DOI: doi.org/10.1063/1.555785.
Downloads
Published
Issue
Section
License
Copyright of articles that appear in Jurnal Teknologi belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.