CHEMICAL CLEANING OF MICROFILTRATION CERAMIC MEMBRANE FOULED BY NOM

Authors

  • Maisarah Mohamed Bazin Mechanical Engineering Section, Universiti Kuala Lumpur, Malaysia France Institute, Section 14, Jalan Teras Jernang, 43650 Bandar Baru Bangi, Selangor, Malaysia
  • Yuzo Nakamura Department of Nanostructured and Advanced Materials, Kagoshima University, 1-21-40 Korimoto, Kagoshima, 890-0065 Japan
  • Norhayati Ahmad Department of Materials, Manufacturing & Industrial Engineering, School of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81300 Johor Bahru, Johor, Malaysia

DOI:

https://doi.org/10.11113/jt.v80.12156

Keywords:

Ceramic membrane, microfiltration, NOM, flux recovery, sintering temperature

Abstract

Microfiltration membrane made from Sayong ball clay by using uniaxial dry compaction method was used to treat natural organic matter (NOM) source water. A sintering temperature of 900 °C to 1000 °C were applied. The effect of sintering temperature on membrane porosity, strength and water flux were identified. The porosity of the membrane decreased with increasing sintering temperature and the strength and flux increased with temperature. The membrane was subjected to NOM filtration experiments. The results showed an improvement to the quality of permeate water, where there is a reduction in COD, TSS, BOD5, turbidity, hardness and salinity; and an increased pH value. The effect of chemical cleaning on the fouled membrane also was studied. After cleaning with NaOH solution, a high flux recovery was achieved (up to 50% from the initial pure water flux). The degree of cleanliness of fouled membranes after chemical cleaning was further observed with SEM and EDX analysis.

References

Burgraff, A. J. & Cot, L. 1996. General Overview, Trends and Prospect in Fundamental of Inorganic Membrane Science and Technology. Edited by Burgraff, A. J. & Cot, L., Elsevier Science B.V.

Huang, H., Young, T. A. & Jacangelo, J. G. 2008. Unified Membrane Fouling Index for Low Pressure Membrane Filtration of Natural Water: Principles and Methodology. Environ. Sci. Technol. 42: 714-720. DOI:10.1021/es071043j.

Rook, J. J. 1974. Formation of Holoforms during Chlorination of Natural Waters. Wat. Treatment Exam. 23: 234-243.

Taniguchi, M., Kilduff, J.E. & Belfort, G. 2003. Modes of Natural Organic Matter Fouling During Ultrafiltration, Environ. Sci. Technol. 37: 1676-1683. DOI: 10.1021/es020555p.

Meng, F., Chae, S. R., Drewa, A., Kraume, M., Shin, H. S. & Yang, F. 2009. Recent Advances in Membrane Bioreactors (MBRs): Membrane Fouling and Membrane Material. Water Research. 43: 1489-1512. https://doi.org/10.1016/j.watres.2008.12.044.

Howe, K. J. & Clark, M. M. 2002. Fouling of Microfiltration and Ultrafiltration Membranes by Natural Waters. Environment Science Technology. 36: 3571-3576. DOI: 10.1021/es025587r.

Lee, H. J, Amy, G., Cho, J., Yoon, Y., Moon, S. H. & Kim, I. S. 2001. Cleaning Strategies for Flux Recovery of an Ultrafiltration Membrane Fouled by Natural Organic Matter. Water Research. 35: 3301-3308. https://doi.org/10.1016/S0043-1354(01)00063-X.

Hong, S. & Elimelech, M. 1997. Chemical and Physical Aspects of Natural Organic Matter (NOM) Fouling of Nanofiltration Membranes. Journal of Membrane Science. 132: 159-181. https://doi.org/10.1016/S0376-7388(97)00060-4.

Yuan, W. & Zydney, A. L. 1999. Humic Acid Fouling During Microfiltration. Journal of Membrane Science. 157: 1-12. https://doi.org/10.1016/S0376-7388(98)00329-9.

Jucker, C. & Clark, M. M. 1994. Adsorption of Aquatic Humic Substances on Hydrophobic Ultrafiltration Membranes. Journal of Membrane Science. 97: 37-52. https://doi.org/10.1016/0376-7388(94)00146-P.

Schork, N, Schuhmann, S., Arndt, F., Schütz, S., Guthausen, G. & Nirschl, H. 2017. MRI Investigations of Filtration: Fouling and Cleaning Processes. Microporous and Mesoporous Materials. 1-5.

https://doi.org/10.1016/j.micromeso.2017.05.042.

A1-Amoudi, A. S. & Farooque, A. M. 2005. Performance Restoration and Autopsy of NF Membranes Used in Seawater Pretreatment. Desalination. 178: 261-271.

https://doi.org/10.1016/j.desal.2004.11.048.

Carroll, T., King, S., Gray, S. R., Bolto, B. A. & Booker, N. A. 2000. The Fouling of Microfiltration Membranes by NOM after Coagulation Treatment. Water Research. 34: 2861-2868. https://doi.org/10.1016/S0043-1354(00)00051-8.

Zondervan, E., Roffel, B. 2007. Evaluation of Different Cleaning Agents Used for Cleaning Ultra Filtration Membranes Fouled by Surface Water. Journal of Membrane Science. 30: 40-49. DOI:10.1016/j.memsci.2007.06.041.

Al-Amoudi, A. & Lovitt, R. W. 2007. Fouling Strategies and the Cleaning System of NF Membranes and Factors Affecting Cleaning Efficiency. Journal of Membrane Science. 303: 4-28.

https://doi.org/10.1016/j.memsci.2007.06.002.

Rabiller-Baudry, M., Maux, M. L., Chaufer, B. & Begoin, L. 2002. Characterisation of Cleaned and Fouled Membrane by ATR-FTIR and EDX Analysis Coupled with SEM: Application to UF of Skimmed Milk with a PES Membrane, Desalination. 146: 123-128.

https://doi.org/10.1016/S0011-9164(02)00503-9.

Zhang, G. J., Liu, Z. Z., Song, L. F., Hu, J. Y., Ong, S. L. & Ng, W. J. 2004. One-step Cleaning Method for Flux Recovery of an Ultrafiltration Membrane Fouled by Banknote Printing Works Wastewater. Desalination. 170: 271-280.

https://doi.org/10.1016/j.desa1.2004.02.101.

Wallberg, O., Jonsson, A. & Wickstrom, P. 2001. Membrane Cleaning - A Case Study in a Sulphite Pulp Mill Bleach Plant. Desalination. 141: 259-268.

https://doi.org/10.1016/S0011-9164(01)85004-9.

Lee, S. H., Chung, K. C., Shin, M. C., Dong, J. I., Lee, H. S. & Auh, K. H. 2002. Preparation of Ceramic Membrane and Application to the Crossflow Microfiltration of Soluble Waste Oil. Materials Letters. 52: 266-271. https://doi.org/10.1016/S0167-577X(01)00405-0.

Bartlett, M., Bird, M. R. & Howell. J. A. 1995. An Experimental Study for the Development of a Qualitative Membrane Cleaning Model. Journal of Membrane Science. 105: 147-157.

https://doi.org/10.1016/0376-7388(95)00052-E.

Blanpain-Avet, P., Migdal, J.F. & Bénézech. T. 2009. Chemical Cleaning of a Tubular Ceramic Microfiltration Membrane Fouled with a Whey Protein Concentrate Suspension—Characterization of Hydraulic and Chemical Cleanliness. Journal of Membrane Science. 337: 153-174.

https://doi.org/10.1016/j.memsci.2009.03.033.

Vasanth D., Uppaluri R. & Pugazhenthi G. 2011. Influence of Sintering Temperature on the Properties of Porous Ceramic Support Prepared by Uniaxial Dry Compaction Method Using Low-Cost Raw Materials for Membrane Applications. Separation Science and Technology. 46: 1241-1249. DOI: 10.1080/01496395.2011.556097.

Monash P. & Pugazhenthi G. 2011. Development of Ceramic Supports Derived from Low-Cost Raw Materials for Membrane Applications and Its Optimization Based on Sintering Temperature. Int. J. Appl. Ceram. Technol. 8(1): 227-238. DOI: 10.1111/j.1744-7402.2009.02443.x.

Sarkar S., Bandyopadhyay S., Larbot A. & Cerneaux S. 2012. New Clay-Alumina Porous Capillary Supports For Filtration Application. Journal of Membrane Science. 392-393, 130-136. https://doi.org/10.1016/j.memsci.2011.12.010.

Khemakhem S., Ben Amar R. & Larbot A. 2007. Synthesis and Characterization of a New Inorganic Ultrafiltration Membrane Composed Entirely of Tunisian Natural Illite Clay. Desalination. 206: 210-214.

https://doi.org/10.1016/j.desal.2006.03.567

Bentama J., Ouazzani K. & Elgarouani A. 2003. New Membranes Made of Sintered Clay Application to Crossflow Microfiltration. African Journal of Science and Technology. 4, 38-41. https://doi.org/10.1016/S0011-9164(02)00479-4.

Jedidi I., Khemakhem S., Saidi S., Larbot A., Elloumi-Ammar N., Fourati A., Charfi A., Ben Salah A., & Ben Amar R. 2011. Preparation of New Ceramic Microfiltration Membrane from Mineral Coal Fly Ash: Application to the Treatment of the Textile Dying Effluents. Powder Technology. 208: 427-432. https://doi.org/10.1016/j.powtec.2010.08.039.

Majouli, A., Tahiri, S., Younsi, S.A., Loukili, H. & Albizane, A. 2012. Elaboration of New Tubular Ceramic Membrane from Local Moroccan Pearlite for Microfiltration Process. Application to Treatment of Industrial Wastewaters. Ceramic International. 38: 4295-4303.

https://doi.org/10.1016/j.ceramint.2012.02.010.

Bhave, R.R. (1991). Liquid filtration and separation with inorganic membranes: Operating considerations and some aspect of system design in Liquid phase applications in Inorganic membranes synthesis, characteristics and applications, Bhave R.R., Editor, Van Nostrand Reinhold, New York, p. 129-154.

Wang, P., Huang, P., Xu, N., Shi, J. & Lin, Y. S. 1999. Effects of Sintering on Properties of Alumina Microfiltration Membranes. Journal of Membrane Science. 155: 309-314.

https://doi.org/10.1016/S0376-7388(98)00297-X.

Kailiang Z., Jie Z., Zhaoliang C., Yue Z., Chuan S., Xiaozu W., Liyue Z., Xiaobin D., Zhaohui W. & Enrico D. 2017. Insight into Fouling Behavior of PVDF Hollow Fiber Membranes Caused by Dextran with Different Pore Size Distributions. Chinese Journal of Chemical Engineering. In Press, Corrected Proof.

https://doi.org/10.1016/j.cjche.2017.04.008.

Jana S., Purkait M. K. & Mohanty K. 2010. Preparation and Characterization of Low-cost Ceramic Microfiltration Membranes for the Removal of Chromate from Aqueous Solutions. Applied Clay Science. 47: 317-324.

https://doi.org/10.1016/j.clay.2009.11.036

Khemakhem S., Larbot A. & Ben Amar R. 2009. New Ceramic Microfiltration Membranes from Tunisian Natural Materials: Application for the Cuttlefish Effluents Treatment. Ceramics International. 35: 55–61.

https://doi.org/10.1016/j.ceramint.2007.09.117.

Downloads

Published

2018-08-21

Issue

Section

Science and Engineering

How to Cite

CHEMICAL CLEANING OF MICROFILTRATION CERAMIC MEMBRANE FOULED BY NOM. (2018). Jurnal Teknologi, 80(6). https://doi.org/10.11113/jt.v80.12156